
A Generic Framework for Model-Set Selection for the
Unification of Testing and Learning MDE Tasks

Edouard Batot
DIRO, Université de Montréal, Canada

batotedo@iro.umontreal.ca

Houari Sahraoui
DIRO, Université de Montréal, Canada

sahraouh@iro.umontreal.ca

ABSTRACT
We propose a generic framework for model-set selection for learn-
ing or testing Model-Driven Engineering tasks. We target specifi-
cally tasks that apply to or manipulate models, such as model def-
inition, model well-formedness checking, and model transforma-
tion. In our framework, we view the model-set selection as a multi-
objective optimization problem. The framework can be tailored to
the learning or testing of a specific task by firstly expressing the
coverage criterion, which will be encoded as a first optimization
objective. The coverage is expressed by tagging the subset of the
input metamodel that is relevant to the considered task. Then, one
or more minimality criteria are selected as additional optimization
objectives. We illustrate the use of our framework with the test-
ing of metamodels. This case study shows that the multi-objective
approach gives better results than random and mono-objective se-
lections.

1. INTRODUCTION
Model-Driven Engineering (MDE) aims at raising the level of

abstraction in software development. It promotes the use of domain-
specific languages (DSLs) that can help domain experts to model
their applications and rely on automation for development and main-
tenance tasks, such as model transformation, code generation, and
model refactoring [1]. Unlike for the traditional software develop-
ment, development artifacts and tasks in MDE (metamodels, trans-
formations, etc.) are themselves domain dependent and require spe-
cific knowledge for their definition and testing. Thus, it is important
to ensure that they are well defined.

When the domain knowledge is available and explicit enough,
it can be used to manually define the development artifacts such
as modeling languages and transformations. These are then tested
to ensure their correctness. However, when this knowledge is in-
complete or difficult to explicit, existing research has shown us that
MDE development artifacts can be learned from examples [2, 3, 4,
5, 6, 7]. In both cases, learning and testing, having representative
sets examples is crucial condition of success.

As models are the core concepts of MDE, it is natural that most
of the development artifacts apply to or manipulate models. For ex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02 - 07, 2016, Saint-Malo, France
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976785

ample, well-formedness rules check if a given model is valid with
respect to the domain knowledge. Similarly, model transforma-
tions, refactoring rules, and other activities such as model merg-
ing and differentiating, also take models as inputs. Consequently,
the examples for learning and testing such artifacts/tasks are sets
of models together with their respective task outputs/oracles. For
instance, a learning example or a test case for metamodel well-
formedness rules is a model with, as output/oracle, its actual va-
lidity. For transformations, transformation rules/programs can be
learned from or tested with a representative set of input models and
their respective expected output models. Whereas input model sets
can be automatically generated, the tasks’ outputs/oracles must be
provided by the expert.

Much work has been conducted on generating and selecting mod-
els and model sets for learning and testing MDE development tasks,
see, for example, [8, 4] for metamodel testing, [9, 10, 11, 12] for
transformation testing, [13] for metamodel definition, etc. How-
ever, all this contributions target a specific task (metamodeling,
transformations, etc.) with a specific purpose (manual definition,
automated learning, or testing). Consequently, they are difficult to
generalize and reuse. In this paper, we propose a generic frame-
work, our approach, for model-set selection for learning or test-
ing Model-Driven Engineering tasks. We target specifically tasks
that apply to or manipulate models, such as modeling, model well-
formedness checking, and model transformation. In our frame-
work, we view the model-set selection as a multi-objective opti-
mization problem. The framework can be tailored to the learning
or testing of a specific task by firstly expressing the coverage crite-
rion, which will be encoded as a first optimization objective. The
coverage is expressed by tagging the subset of the input metamodel
that is relevant to the considered task. Then, one or more minimal-
ity criteria are selected as additional optimization objectives.

To illustrate the use of our approach, we address the well-known
problem of metamodel testing [8]. We evaluate our approach on
this case by comparing the generated model sets with those ob-
tained by mono-objective and random strategies. The results of
this study show that the multi-objective approach gives better re-
sults than the other strategies and that different combinations of the
coverage with the minimality objectives lead to different trade-offs
in terms of coverage and size of the model sets.

The remainder of the paper is organized as follows. In Section 2,
we present the basic definitions and illustrate the commonalities
and differences when learning/testing MDE tasks. Section 3, de-
scribes our approach, the unified model-set selection framework.
We illustrate the use our approach in Section 4 with the metamodel
testing case. Section 4.1 presents the setup and the results of an em-
pirical study. Finally, after discussing the related work in Section 6,
we give a discussion and a conclusion in Section 7.

http://dx.doi.org/10.1145/2976767.2976785

2. PROBLEM STATEMENT
The problem we solve in this paper is the definition of a generic

framework for the selection of model sets that can be used to define,
learn or test MDE tasks. In MDE, models are the main concepts. It
is then normal that most of the tasks use or manipulate one or more
models. In the remainder of this section, we present examples of
tasks manipulating models, and explore their commonalities. Then,
we propose a common terminology, which will be used in the re-
mainder of the paper.

2.1 Task Examples

2.1.1 Metamodeling
Metamodeling is basically the definition of a modeling language,

since it provides a way of describing the whole class of models that
can be represented by that language. This task needs model ex-
amples to ensure, when defining the metamodel, that the concepts
brought by the domain expert are properly considered [14]. An
example for a metamodeling task is composed of a model, which
conform to the already-defined version of the metamodel, and its
validity with respect to the represented domain. Thus, after defin-
ing a version of the metamodel, one can generate a set of models
that covers as much as possible the modeling space defined by the
current version [13]. Although a model set can be automatically
generated, the validity of the models to the represented domain
must be manually provided by an oracle/expert. As this manual
operation can be costly, it is better that the generated set of models
is as minimal as possible.

2.1.2 Model Well-Formedness Checking
After defining a metamodel, a next step is to reduce the meta-

model scope to avoid ill-formed configurations/instances [14]. This
is done by producing well-formedness rules (WFR), which qualify
models being or not part of an application domain. WFR can be de-
fined manually when the knowledge about the domain is complete
and explicit enough to be formalized in, for instance, OCL expres-
sions. In that case, model examples are used to test these rules. Al-
ternatively, WFR can be learned from examples [5]. In this work,
WFR are learned from a set of examples and counter-examples. For
learning and testing WFR, examples are model instances tagged as
valid whereas counter-examples are model instances tagged as in-
valid. Like for the metamodeling task, generating model instances
can be done automatically. However, tagging them as valid/invalid
is a manual task that cannot be performed on large sets of models
in a reasonable timeframe.

2.1.3 Model Transformation
A model transformation (MT) is the process of transforming a

model into another model or a textual representation according to a
transformation specification. MTs are actually defined at the meta-
model level, and then applied at the model level on models that con-
form to the considered metamodels [15]. When a transformation
program is defined, it can be tested by verifying that this program
produces the expected outputs for a given set of input models [16],
or more generally, outputs that conform to a given oracle [17]. A
transformation program can be learned from a set of input models
and their corresponding output model [2, 18]. Hence, a case (ex-
ample) for testing (learning) a model transformation is composed
of an input model and, for instance, its associated expected output
model [19]. The quality of a learned transformation and the accu-
racy of testing a transformation both rely on the representativeness
of the input models with respect to the input space of that transfor-
mation, described by its input metamodel. Actually, a transforma-

tion may concern only part of the input metamodel as stated in [20]
and [11]. As a consequence, automatic generation of models to
learn/test MT should maximize the coverage of the metamodel part
concerned by the transformation while minimizing the number and
size of the generated models. As for the two previous tasks, the out-
put part of the cases is expected to be manually specified/provided.
The same reasoning holds for model refactoring, which is a partic-
ular kind of transformation. In this case, the refactoring operations
apply to instances of only a subset of metamodel concepts.

2.2 Commonalities and Terminology
In addition to the previously-mentioned examples, many tasks

can be tested and/or learned by means of selected cases, with each
case having an input model (sometimes more than one) and a man-
ually specified/given output. Examples of such activities are model
evolution, code-generation, and model merge, to name a few.

We showed in this section that these MDE tasks can be tested fol-
lowing a same testing scenario. They take a model as input for their
test cases, and require an expert to write the expected output [21].
We showed too that learning an automated task in MDE requires
the same data as the testing: input models and their corresponding
expected task outputs. Moreover, for all tasks, input models of the
cases must cover as much as possible an input space defined by
the input metamodel. The coverage definition varies from one task
to another by determining which parts of the input metamodel are
concerned by the task. Finally, another common part to these ac-
tivities is that providing the oracle for each generated input model
is time and effort consuming. Hence, a model set selection needs
to consider the number/size of the retained models.

To use a uniform vocabulary for the rest of this paper, we intro-
duce in the following paragraphs a common terminology. We start
by defining the concept of task.

DEFINITION 1. A task is any MDE activity that applies to or
manipulates models.

A task can be manual such as defining the structure of a meta-
model. In that situation, giving model instances to the metamodeler
helps ensuring that the defined version is correct with respect to the
domain knowledge. The task can be automatic such in the case of
model transformation, refactoring, or validity checking with well-
formedness rules. The second important concept to define is the
model-set selection.

DEFINITION 2. The model-set selection is the process of se-
lecting, from a model base, a set of models that satisfies one or
more selection objectives.

The model base can be gathered from existing material or ran-
domly generated. Another important concept to define is the pur-
pose of the model-set selection.

DEFINITION 3. The model-set selection purpose is the step in
the lifecycle of the task for which the selected models are necessary.
A step can be the manual definition, the automated learning or the
testing of the targeted task.

Finally, the last concept we define is the case.

DEFINITION 4. Depending on the purpose and the task for a
model set selection, a case is a pair composed of (1) a model in the
selected set and (2) the expected task output corresponding to this
model. A case can be a test case or a learning example.

ManualProcess

Partial

Models

Complete

models

Coverage

Definition

Metamodel

Oracle

Precision

Generation

of input

models

1

A r t i f a c t

u n d e r

t e s t

OutputProcessL e g e n d :

Manual

Models’

Completion

2

Input

T a s k

t o

l e a r n

pp

Minimality

Criteria

Combination

Figure 1: A generic framework for testing MDE activities

3. FRAMEWORK
As stated in Section 2, MDE tasks diverge on their coverage def-

inition and in the type of expected outputs. Fig. 1 presents the
general architecture of our unified framework. A metamodel, to-
gether with a coverage definition, i.e., its subset, provide sufficient
information to select a set of representative input models. A choice
between different minimality criteria, which can be combined to-
gether, is offered to take into account variations in the minimality
definition. Then, each selected model needs to be completed by an
expert to specify the output expected after the execution of the task
on this input model. Coverage definition and output specification
are highly task dependent. In this paper, we focus on the first step,
i.e., the selection of input models. In the remainder of this section,
we present the criteria to optimize during the model set selection.
Then, we explain how the framework combines them in order to
select model sets as a multi-objective optimization problem.

3.1 Model set Selection Objectives

3.1.1 Coverage Definition
As we are dealing with inputs models, the coverage that must

be satisfied by the selection process can be expressed in terms of
the models’ metamodel. Still, different tasks may require different
modeling spaces. As stated in Section 2, a model transformation
task may be concerned only by the subset of the metamodel’s el-
ements that are targeted by the transformation, whereas, testing a
metamodel may involve the whole metamodel. In our framework,
the coverage criterion is expressed as a subset of the metamodel
elements, which are tagged as mandatory. The remaining elements
are optional in the sense that the selected models may include in-
stances of them, but these are not considered when evaluating the
coverage.

Choosing and applying a coverage definition is an open topic
which usually requires knowledge from the application domain.
For some tasks, the involved metamodel elements can be enumer-
ated explicitly. For other, the set of metamodel’s elements must
be deduced from a high level specification. To illustrate this sec-
ond situation, let us consider the task of learning well-formedness
rules.

Suppose we want to learn WFRs to complete the definition of
the Ecore metamodel (see the partial illustration in Fig. 2). An in-
tuitive approach to define the coverage is to consider the whole
Ecore metamodel. However, Cadavid, after studying dozens of
metamodels, shows in [22] that there are 21 OCL patterns that are

NamedElement
ETypedElement

lowerBound: int
upperBound: int

NamedElement
EClassifier

NamedElement
EPackage

EStructuralFeature

derived: boolean

EClass EDataType

EAttribute EReference

containement: boolean

EEnum

derived: boolean

NamedElement
EENumLiteral

+eType

+eSubPackages

+eOpposite

+eSuperTypes

0..1

0..*

0..*

0..*0..1

0..*

0..*

Figure 2: Ecore metamodel

used to express all the WFRs independently from the considered
metamodel. Of course, these patterns are expressed at the meta-
meta-level (MOF). Consequently, for learning WFRs, the process,
rather than searching for any OCL expression that can apply to
Ecore, it searches only for OCL expressions that are instances of
these patterns in this metamodel [5].

A pattern definition contains the MOF structure involved, an
OCL Expression Template, and parameters. The MOF structure
characterizes the structural situations in which the pattern may ap-
ply (e.g., classes and features involved). The OCL Expression Tem-
plate defines the type of WFRs by explaining how the listed pa-
rameters are used to express these rules. The following description
details the example of AcyclicReference pattern.

• MOF Structure: The pattern applies whenever there is a
class containing a reference which type is itself. Also, the
upper bound of this reference has to be "many"; this is be-
cause the OCL expression invokes on this attribute the oper-
ation closure, which can only be invoked on collections.

• OCL Expression Template:
context ClassA inv AcyclicReference : attributeA

->closure(iterator: ClassA | iterator.attributeA)
->excludes(self) ;

• Parameters: ClassA, AttributeA

If we want to learn WFRs of type AcyclicReference in Ecore,
we have to generate model cases that cover the different instances
of this pattern in Ecore. As shown in Fig. 4, classes "EClass" and

ClassA

referenceA
1..*

Figure 3: MOF structure of pattern AcyclicReference

"EPackage" with their corresponding one-to-many references, re-
spectively "superTypes" and "subPackages" are the only instances
of this pattern.

NamedElement
ETypedElement

lowerBound: int
upperBound: int

NamedElement
EClassifier

NamedElement
EPackage

EStructuralFeature

derived: boolean

EClass EDataType

EAttribute EReference

containement: boolean

EEnum

derived: boolean

NamedElement
EENumLiteral

+eType

+eSubPackages

+eOpposite

+eSuperTypes

0..1

0..*

0..*

0..*0..1

0..*

0..*

Figure 4: Elements of Ecore tagged as mandatory w.r.t. the
pattern AcyclicReference

When considering more patterns, other elements, correspond-
ing to instances of these patterns, are then added in the tagged
list. For example, consider the pattern, ReferenceDifferentFrom-
Self, which involves classes with cyclic references with 0..1 car-
dinalities. Then, a match is the class "EReference" and its refer-
ence "eOpposite". These are also tagged as mandatory elements as
depicted in Fig. 5. The same reasoning holds for model refactor-
ing learning or testing. Here the elements to tag are deduced from
generic refactoring operations.

NamedElement
ETypedElement

lowerBound: int
upperBound: int

NamedElement
EClassifier

NamedElement
EPackage

EStructuralFeature

derived: boolean

EClass EDataType

EAttribute EEnum

derived: boolean

NamedElement
EENumLiteral

+eType

+eSubPackages

+eSuperTypes

0..*

0..*

0..*0..1

0..*

0..*

EReference

containement: boolean
+eOpposite

0..1

Figure 5: Elements of Ecore tagged as mandatory w.r.t. the
patterns AcyclicReference and ReferenceDifferentFromSelf

Once the mandatory part of the metamodel is defined accord-
ing to the considered task and purpose, the coverage calculation is
generic and metamodel-independent in our framework as we will
explain it in Section 3.2.2.

3.1.2 Minimality criterion
Selection of a set of models with a high coverage could be eas-

ily reached if we were not limited on the number and size of the
selected models. However, recall that for each selected model, we
have to complete manually the case by providing the task output
for this model. For example, to test (or learn) a transformation, an

expert could be asked to produce manually a transformed model for
each selected model.

For this reason, the coverage objective should be mitigated by
a minimality objective to find a good tradeoff between the model
set coverage and its size. This idea of combining both objectives
in MDE is not new. In [4], Cadavid et al. combines the coverage
and a dissimilarity criterion in a single objective function to guide
the model generation process. As the selected models should be as
dissimilar as possible, solutions with a lot of models are expected
to be penalized by this objective. A limitation to this dissimilarity
criterion is that it is pair-wise, and that two models cannot be fully
dissimilar as recognized by the authors. Thus, they tolerate a cer-
tain overlap ratio, given as a parameter. Depending on the value of
this parameter, the number of selected models may be very large.

In our framework, in addition to the dissimilarity between mod-
els in a set (DIS), we consider two other minimality criteria. Firstly,
we aim at minimizing the size of the model set in terms of the num-
ber of models (MIN). This criterion, considered alone, could results
in a single (or a few) very large model(s) with a good coverage. To
circumvent this side effect, we can consider the size of the model
set in terms of the total number of elements contained in all the
models of the set (MIN-R). In summary:

• DIS guarantees models to be dissimilar pair-wise in the so-
lution set.

• MIN guarantees the model set to be kept as small as possible
in terms of the number of models.

• MIN-R guarantees the models, in the solution set, to be as
small as possible in terms of instantiated objects.

Each minimality objective has its own advantages and draw-
backs. When using our framework, in addition to the coverage
objective, one can select one or more minimality criteria depend-
ing on the targeted task. However, although selecting many mini-
mality objectives may take advantages from them, it is known that
increasing the number of objectives may compromise the chances
to converge towards the optimal solution. The implementation of
these objectives into fitness functions is detailed in Section 3.2.2.
The evaluation of their combinations is studied in 4.1.

3.2 Model-set Selection as MOOP

Front 3

Front 1

Front 3

Front 2

Front 5

Front 4

P0

Q0

Rejected

G
e

n
e

ti
c

 o
p

e
ra

to
rs

Non-dominance

Sorting
Crowding distance

sorting

P1

Figure 6: NSGA-II [23]

Coverage and minimality objectives being conflicting in essence,
we represent the model set selection as a multi-objective optimiza-
tion problem, and we solve it using the non-sorting genetic algo-
rithm NSGA-II [23]. Before explaining how we adapt this algo-
rithm to our problem, let us introduce some basic definitions.

DEFINITION 5. A multi-objective optimization problem (MOOP)
consists in minimizing or maximizing an objective function vector
f(x) = [f1(x), f2(x), ..., fM (x)] of M objectives under some
constraints. The set of feasible solutions, i.e., those that satisfy the
problem constraints, defines the search space Ω. The resolution of
a MOOP consists in approximating the whole Pareto front.

DEFINITION 6. Pareto optimality: In the case of a minimiza-
tion problem, a solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω and
∀m ∈ I = {1, ...,M} either fm(x) = fm(x∗) or there is at
least one m ∈ I such that fm(x) > fm(x∗). In other words,
x∗ is Pareto optimal if no feasible solution exists, which would im-
prove some objective without causing a simultaneous worsening in
at least another one.

DEFINITION 7. Pareto dominance: A solution u is said to
dominate another solution v (denoted by f(u) � f(v)) if and only
if f(u) is partially less than f(v), i.e., ∀m ∈ {1, ...M} we have
fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where fm(u) < fm(v).

DEFINITION 8. Pareto optimal set: For a MOOP f(x), the
Pareto optimal set is P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) � f(x)}.

The idea of NSGA-II [23] is to make a population of candidate
solutions evolve toward the near-optimal solution in order to solve
a multi-objective optimization problem. NSGA-II is designed to
find a set of optimal solutions, called non-dominated solutions, also
Pareto set. A non-dominated solution is the one which provides a
suitable compromise between all objectives without degrading any
of them. As described in Fig. 6, the first step in NSGA-II is to
create randomly a population P0 of N/2 individuals encoded us-
ing a specific representation. Then, a child population Q0, of the
same size, is generated from the population of parents P0 using
genetic operators such as crossover and mutation. Both popula-
tions are merged into an initial population R0 of size N , which is
sorted into dominance fronts according to the dominance principle.
The first (Pareto) front includes the non-dominated solutions; the
second front contains the solutions that are dominated only by the
solutions of the first front, and so on and so forth. The fronts are
included in the parent population P1 of the next generation follow-
ing the dominance order until the size of N/2 is reached. If this
size coincides with part of a front, the solutions inside this front
are sorted, to complete the population, according to a crowding
distance which favors diversity in the solutions [23]. This process
will be repeated until a stop criterion is reached, e.g., a number of
iterations or all objectives greater than .99.

3.2.1 Solution Representation and Solution Creation
As our goal is to maximize the coverage of a metamodel or a sub-

set of it, with a minimal set of models, a solution for our problem
refers simply to a set of models. Actually, we transform the model
generation problem into a model selection one. In a first step, we
randomly generate a base of models for the considered metamodel.
To this end, we use AtlanMod instantiator 1. This tool allows to
generate models in XMI format from a metamodel described in
ECORE. The expected number of models, number of objects per
model, maximum number of attributes and references, and maxi-
mum depth of the references can be specified. The generator pro-
duces the required number of correct instances (invalid instances,
w.r.t multiplicity constraints, identified by the tool are ignored). It
is configured with a uniform distribution, i.e., when a maximum
1https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/
master/fr.inria.atlanmod.instantiator

number is given for attributes/references/depth, any number below
the maximum has the same probability to occur. We repeat the gen-
eration process with different model sizes to produce a large base
of examples. For our experiments, we generate 10000 models of 2
to 200 objects.

In a second step, our optimization algorithm explores the set of
subset of the model base to select the one which satisfies the cov-
erage and minimality objectives.

3.2.2 Objective Functions
The objective functions assess the ability of a solution to solve

the problem under consideration. To evaluate solutions (i.e., model
sets), we consider the coverage and minimality objectives: maxi-
mizing the coverage of the problem space by the model cases, and
constraining the resulting set to be as small as possible.

Coverage computation. To assess the coverage of the mod-
eling space by a set of models, we use the work by Fleurey et
al. [10]. This work is considered as the state-of-the-art in partition-
ing a metamodel in order to distillate interesting structures from
its features. We rate coverage upon this assumption. Based on
Ostrand et al. [24] category-partitioning method, the authors de-
compose the static structure of a metamodel in three hierarchical
levels: the metamodel fragment partition MFP contains model
fragments, themselves composed of object fragments.

An object fragment is the association of a possible value (or a
range of values) to a structural feature (attribute or reference) in
the metamodel. To this end, each feature is partitioned, before-
hand, into a set of (ranges of) values. For example, an integer-type
attribute P of a class C is partitioned into three categories: {P=0,
P=1, P>1}. For a given metamodel, an object fragment is defined
for each category of the partition of each attribute/reference, e.g.,
of(P, 0).

A model fragment contains one or more object fragments. We
considered two strategies to define the model fragments. For the
AllRanges strategy, a model fragment is defined for each object
fragment, e.g., mf((P, 0)). For the AllPartitions strategy, we de-
fine a model fragment for each attribute/reference as a set of object
fragments of the corresponding partition, e.g., mf((P, 0), (P, 1),
(P,> 1)). Fleurey et al. present two more strategies in order to
cope with the combinatorial explosion of the partitioning of large
metamodels.

For a given model instance mi, a model fragment mfj is cov-
ered by mi if all the object fragments in mfj appear in mi. We de-
note this property by covering(mfj ,mi) = true. Starting from
this, it is possible to derive the set of model fragments covered
MFC(ms) by a set of models ms (a solution in our problem).
Then, our coverage objective function is defined as the proportion
of model fragments covered by the candidate solution ms over the
metamodel fragment partition MFP. Formally:

coverage(ms) =
|MFC(ms)|
|MFP |

Recall that only the elements of the metamodel tagged as manda-
tory are considered, in the definition of MFP, for the coverage eval-
uation.

Minimality computation. We consider three different minimal-
ity criteria DIS, MIN, and MIN-R. For the dissimilarity DIS of a
solution, we use the definition from Cadavid et al.in [4], formally:

DIS = 1− excessCovering

(MFRT ×#fragmentsCovered)
(1)

where excessCovering is the number of fragments covered in
more than one model of the solution, #fragmentsCovered is

https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator

the number of fragments covered by the model set, and

MFRT = #fragments× overlapRatio (2)

The coefficient overlapRatio refers to the tolerated percentage of
overlap between two models. This is set to 0.1 in our evaluation, as
suggested by Cadavid et al. [4].

Then, we consider as minimality MIN of a solution ms the num-
ber of its models. However, it might be interesting to normalize this
objective in the interval [0, 1]. In this context, the worst case being
that each model covers only one fragment of the partitioned meta-
model, MIN is normalized by the number of fragments in the MFP.
MIN is defined as follows:

MIN = 1− |ms|
|MFP | (3)

Finally, to take into consideration the variation in size of models
among the solution set, the third minimality criteria MIN-R uses
the number of objects instantiated in the models of the solutions.
Here again, we normalize the size by the number of fragments and
the average size of the set models. Formally,

MINR = 1−
∑

mi∈ms(size(mi))

|MFP | × avg_model_size
(4)

where size(mi) is the size in term of objects of a model mi and
avg_model_size is the average size of the solution’s models.

For MIN and MIN-R, our normalization uses approximations of
the maximum number of models and the maximum number of ob-
jects in a solution. These numbers can be under-estimated, which
could results in negative values for MIN and MIN-R. In that situ-
ations, we set the lower bound of MIN and MIN-R to 0. The goal
of normalizing the three minimality criteria is to allow the com-
bination of all the objective values, including the coverage, when
selecting a unique solution among the Pareto front as explained in
Section 4.1.

3.2.3 Genetic Operators
As mentioned earlier in this section, when evolving a population

of solutions,NSGA-II derives new solutions from existing ones us-
ing crossover and mutation operators. The goal of the crossover is
to find new, and possibly better, combinations of the genetic ma-
terial present in a population. The mutation allows to inject new
genetic material to possibly improve the population of solutions.
As illustrated in Fig. 7, the crossover operator, in our framework,
uses the single cut-point crossover. Each parent solution (set of
models) is divided into two model subsets according to a randomly
picked cut point. Then the model subsets of the parent solutions
are exchanged to form two new model sets.

The mutation operator selects randomly a model in a solution
(model set) and replaces it by a new model randomly picked in the
model base.

M

1-1

M

1-2

M

1-3

M

1-4

M

1-5

M

2-1

M

2-2

M

2-3

M

2-4

New model

from model base

Parent 1

Parent 2

M

1-1

M

1-2

M

1-3

M

1-4

M

1-5

M

2-1

M

2-2

M

2-3

M

2-4

Point-cut

Child 1

Child 2

Crossover

M

1-1

M

1-2

M

1-3

M

1-4

M

1-5Parent

Mutation
M

1-1

M

1-2

M

1-3

M

1-6

M

1-5
Child

: ModelM

X-X

Figure 7: Crossover and mutation adapted in our framework

4. CASE STUDY: METAMODEL TESTING
MDE considers metamodels as development artifacts. They can

be used to derive other artifacts automatically. We need, then, to
ensure that a metamodel is correct before using it. Papers focusing
on metamodel testing remain scarce. Wu et al. [25], in their lit-
erature review, highlight four main intents in metamodel instance
generation/selection, and testing is not part of them.

During the metamodeling activity, the first step consists in ensur-
ing that what the expert wants to express can be actually expressed.
The expert usually explains the main concepts she wants to handle
to the modeler. Testing a metamodel can be done in a iterative pro-
cess [13]. As soon as a first draft has been erected, it can be used to
generate models automatically. These generated models are shown
to the expert. She then decides if they are or not part of the cor-
rect modeling space (oracle). During the next steps, the annotated
models are used to refine the structure of the metamodel. Models
are generated after each refinement exhibiting the corner cases of
the metamodeling space and the expert annotates them again. This
iteration is repeated until no more invalid models are generated,
i.e., the metamodel fits to the application space.

In this section, we show how our generic framework can be ap-
plied to metamodel testing and evaluate this application. With re-
spect to the objectives, we consider the whole metamodel to eval-
uate the coverage, i.e., we tag all the elements as mandatory. In-
deed, as the metamodel defines the modeling space, we have to
select a representative set of models that covers this space. For the
minimality, we study each objective separately and the two-by-two
combinations.

4.1 Evaluation
Our approach is implemented in Java using Eclipse Modeling

Framework (EMF) to ease the use of complex metamodels written
in Ecore. Model instances are encoded in XMI (XML METADATA
INTERCHANGE).

In the remainder of this section, we present our research ques-
tions and the experimental setup.

4.1.1 Research questions

RQ1: Are the results of our approach attributable to the search
strategy or to the number of explored solutions? We answer
this question by exploring the same amount of solutions by
our algorithm and by a random search, and compare the best
solutions from both strategies.

RQ2: Is our approach better than a mono-objective multi-criteria
search? To answer this question, we compare the results of
our approach to those of a classical genetic algorithm with a
single objective that combines the coverage and minimality
criteria.

RQ3: What combination of the minimality criteria gives the best
tradeoff between coverage and solution size? We answer
this question by running both our approach and the mono-
objective algorithm with all combinations of one or two min-
imality criteria, and compare the resulting alternatives. We
did not consider the three minimality criteria at the same time
since, with NSGA-II, it is difficult to converge towards in-
teresting solutions with four objectives (including the cover-
age).

4.1.2 Experimental setup
Metamodels To assess our selection process, we executed the

algorithms on three different metamodels: two small ones, Fea-

ture Diagram which contains 5 classes and 8 features, and Compos-
ite State-Machine which contains 4 classes and 10 features; and a
larger one, ATL2.0, with 84 classes and 146 features.

Model base. As we are using a fixed model base to select the
representative model sets, we have to ensure the diversity of the
models in that base. Therefore, we run the Instantiator to produce
10.000 models with different structural characteristics. During the
generation, we varied the expected size of models from 2 to 200
classes (with steps of 10), and we picked randomly the numbers of
attributes and references in a range of 0 to 14. The depth of refer-
ence chains is picked between 0 and 10. We took those numbers
from common knowledge about the statistical structure of meta-
models and its correlation with the practical use. These parameters
can be changed in our framework. At the end, the 10.000 models
generated are stored in the base from which the initial population
of solutions is created and from which the models are randomly
picked for the mutation operator. During the execution, even if our
approach allows to specify which range of size the models must
have to be picked, we took all the models present in the base.

Best solution selection. A multi-objective algorithm gives a set
of near-optimal solutions (Pareto set). In an application scenario,
an expert decides which solution to select. However, for our evalua-
tion, we have to choose a solution among the Pareto set to compare
our algorithm with those producing a single solution. Choosing
such a solution in a multi-objective setting is a well-known prob-
lem as explained by Murashkin et al. [26]. In these experiments,
we select the solution having the lowest Euclidian distance with the
ideal solution having all objectives equal to 1. Additionally, as all
the studied algorithms are probabilistic by nature, we executed each
algorithm 30 times and compare the distributions of the results.

Algorithmic parameters. When parent solutions are selected,
the crossover and mutation operators are applied with a certain
probability. High mutation probability on a solution with a few
models would have a dramatic impact, i.e., changing one model in
a set of two models would results in a big variation of the cover-
age. However, such a probability would have a limited impact for
solutions with a lot of models. As generally the average size of
solutions is correlated with the size of the metamodel, we consid-
ered different mutation probabilities: 0.7 for the largest metamodel
ATL2.0, and 0.35 for the smallest metamodels Feature Diagram and
Composed State-Machine. The crossover probability is set to 0.9
in all cases. We ran both the mono- and multi-objective algorithms
with a population size of 100 model sets during 800 generations.

5. EVALUATION RESULTS
For the small metamodels, all the approaches produced solutions

with high coverage and a very few models. For questions RQ1,
RQ2, and RQ3, we did not observe any notable difference. The
results reported in the following paragraphs are only for the largest
metamodel ATL2.0.

5.1 RQ1: comparison between our approach
and a random search algorithm

Results of the comparison between a random selection and our
approach are shown in Figures 8 and 9. Random selection builds
sets by randomly picking models from the model base. To have a
fair comparison, the random selection produces 100 × 800 model
sets, which corresponds to the number of model sets explored by
our approach (800 generations of 100 model sets each). The size
of the set is randomly set (between 0 and 40) for each iteration of
the random selection and for the initial population in our approach.
As it can be seen in Fig. 8, column 1, the coverage for 30 random
executions is by far lower (an average of 66%) than the one of our

approach (an average of 91% for the best case and 83% for the
worst case). Moreover, our algorithm produces uniform results (flat
boxplot) compared to the random search, for which the coverage
varies from 44% to 76%. Both the random search and our approach
have the best solutions with small model sets (around 18 models per
solution) as shown in Fig. 9, column 1.

5.2 RQ2: comparison between our approach
and mono-objective

Now that we established that the quality of results is attributable
to our search strategy and not to the number of explored solutions,
the next step if to assess if a multi-objective search brings a benefit
compared to a mono-objective search. For the mono-objective ap-
proach, we use a classical genetic algorithm with a single-objective
function, defined as the average of the coverage and the minimality
values. Formally:

fmono(s) =
COV (s) + minimality(s)

2
(5)

where minimality(s) can be DIS, or MIN functions as stated
in, respectively, equations 1 and 3. Additionally, we use the crossover
and mutation operators of our multi-objective approach with the
same probabilities.

In Fig. 8 and Fig. 9, columns two and three present the result of
a mono-objective algorithm using a combination of the coverage
with, respectively, DIS and MIN. Columns four and five give the
results for respectively the same configurations of our approach.

The mono-objective algorithm produces a higher coverage value
when DIS is used (93% on average compared to 88%). However,
this comes at the cost of having very large model sets (70 on av-
erage compared to 13 for the multi-objective counterpart). When
MIN is used our approach produces a higher coverage (91% on av-
erage compared to 87%) with almost the same number of models
and the same number of objects per model.

In conclusion, when considering the coverage with a minimality
criterion, our approach achieves the best tradeoff between the cov-
erage and the minimality for model set selection. The coverage can
be higher with the mono-objective algorithm but with very large
solutions.

5.3 RQ3: comparison between combinations
of the minimality objectives

Different combinations of minimality objectives result in differ-
ent trade-offs between the coverage and the size of the solutions.
As shown in Fig. 8 and Fig. 9, when selecting a unique criterion
(columns four to six), MIN and MIN-R have better coverage val-
ues than DIS with almost the same number of models in the so-
lutions. However, DIS tends to have smaller models as shown by
the boxplots of the average number of objects. When considering
two minimality criteria (columns seven to nine), the combination
of DIS with MIN gives the best results in terms of coverage but
also in terms of the model average size. The only weak point is a
slightly higher number of models in the solutions.

In conclusion, there is not a clear winner for the minimality cri-
teria combinations. The combination of DIS and MIN seems, how-
ever, more promising than the others.

5.4 Performance
As stated in Section 5.1, we ran the experiment 30 times for each

combination for 800 generations having, each, 100 solutions. The
computer used is a classic desktop with an Intel(R) Core(TM) i7-
4770 @ 3.40 GHz with 32 Go RAM. The execution of our algo-
rithm takes less than a minute with small metamodels. With the

C
o

v
e

ra
g

e

1,00-

,90-

,80-

,70-

,60-

,50-

,40-

65

11

COV
DIS

COV
DIS
MIN

Random

COV&DIS

Mono-objective

COV&MIN

2-objectives 3-objectives

COV
DIS

MIN-R

COV
MIN

MIN-R

COV
MIN

COV
MIN-R

Figure 8: Coverage for ATL2.0

COV
DIS

#
 m

o
d
e

ls

5

0

50

60

58
55

59

121

186

-180

-140

-100

-60

-160

-120

-80

A
v
g
e
ra

g
e

#
 o

b
je

c
ts150-

100-

50-

0-

COV
DIS
MIN

Random

COV&DIS

Mono-objective

COV&MIN

2-objectives 3-objectives

COV
DIS

MIN-R

COV
MIN
MIN-R

COV
MIN

COV
MIN-R

Figure 9: Size of solutions for ATL2.0

larger metamodel (i.e., ATL2.0), the execution time depends on the
algorithm and the objectives chosen, as shown in Fig. 10.

When considering one minimality criterion and with the mono-
objective strategy (columns two and three), DIS makes the execu-
tion time more volatile, although the median is almost the same for
DIS and MIN (around 15 minutes). This can be explained by the
fact that DIS tends to select solutions with many models that have
to be compared pairwise as explained in Section 3.1.2.

With the multi-objective strategy, (columns four to six), the exe-
cution proceed faster, especially when MIN or MIN-R are consid-
ered (around 10 minutes). The execution time is almost doubled
when considering two minimality criteria (around 21 minutes) as
it can be seen in columns seven to nine. In addition to the cost of
evaluating an additional objective, an extra-cost is brought by the
dominance computation to define the fronts.

These figures are acceptable since the process of generating in-
stances does not require a real-time execution. Still to reduce this
time, we experimented with 500 generations (instead of 800). With
this setting, we almost cut the execution time by half while limiting
the coverage degradation to a very small amount. In this context,
we improved our framework by allowing the user to achieve a good

compromise between the execution time and the coverage by offer-
ing her the possibility of monitoring the coverage evolution and of
stopping the execution when results are judged acceptable.

5.5 Discussion
The above-mentioned observations are statistically significant,

i.e., Mann-Whitney test with a p-value < 0.05. The significance
and effect size of the tests used to answer the research questions are
summarized in table 1. Results show that our approach is a better
alternative than random and mono-objective strategies for model
case selection for the metamodeling activity. However, there is no
clear best combination of the minimality objectives.

Our framework is generic enough to consider different defini-
tions of the coverage (intentional definition) together with a se-
lected composition of minimality definitions (extensional defini-
tion). We have, however, to acknowledge the following limitations.
Firstly, we generate the model base without taking into considera-
tion the characteristics of the studied metamodel. Small metamod-
els may require model bases with relatively small models, whereas
large metamodels may need large bases. It will be interesting in the
future to ensure the diversity/variability of our model base with re-

E
x
e

c
u

ti
o

n
 T

im
e

50’-

45’-

40’-

35’-

30’-

25’-

10’-

20’-

15’-

5’-

COV
DIS

COV
DIS
MIN

Random

COV&DIS

Mono-objective

COV&MIN

2-objectives

COV
MIN

3-objectives

52
53
56

-50’

-45’

-40’

-35’

-25’

-10’

-20’

-15’

-5’

-30’

COV
MIN-R

COV
DIS

MIN-R

COV
MIN

MIN-R

Figure 10: Time elapsed during executions

RQ1 RQ2 RQ3
col. 1 vs col. 4 col. 2 vs col. 4 col. 4 vs col. 7

p-value Cohen’s d p-value Cohen’s d p-value Cohen’s d
Coverage < 0.01 High < 0.01 High 0.86 Low
Size in number of models < 0.01 High < 0.01 High 0.83 Low
Size in average number of objects < 0.01 High 0.530 Low < 0.01 high
Execution time < 0.01 High < 0.05 Medium < 0.01 Low

Table 1: Statistical significance and effect size for the differences between alternatives of col. 1 (random), col. 2 (mono-objective with
DIS), col. 4 (multi-objective with DIS), and col. 7 (multi-objective with DIS and MIN)

spect to the considered metamodels and tasks, and to consider the
situation where the model base is gathered from existing models.
Moreover, we plan to consider more large metamodels to study the
generalizability of our approach.

Another important aspect is to evaluate the impact of the selected
model sets on the quality of the targeted task. For example, when
testing a transformation, one can measure the number of errors
found thanks to the selected set of model cases. Similarly, when
learning WFRs, we can evaluate the correctness of the WFRs ob-
tained by a set of selected model cases.

Finally, we do not handle the case of manual completion after
selecting a set of models. We believe that we can define common
aspects of this activity to support the expert work.

6. RELATED WORK
Our contribution crosscuts different research fields: (1) mod-

el/instance generation/selection, (2) testing MDE tasks, including
search-based testing, and (3) learning MDE artifacts by examples.
In the remainder of this section, we discuss some of the existing
work in those fields.

For model instance generation, Wu discussed, in a literature re-
view [25], algorithms used and fields investigated for/in model in-
stance generation. His conclusion, which reflects a general trend in
the modeling literature, states that instance generation is mostly in-
vestigated in order to feed model transformation testing algorithms.
He does not mention multi-objective model generation, nor meta-
model testing as a goal for the generation process. Most of the
existing work on instance generation, e.g., [27, 28], target specific
tasks and purposes without a generalization effort. In particular,
Ehrig et al. [29] propose an approach to translate metamodels into

graph-grammars in order to use them to generate model instances.
Although, the authors give the principles of the model generation,
they did not implement this part nor validate it in terms of coverage.
Other limits of this approach, i.e., completeness and rule complex-
ity, are pointed out by Hoffmann et al. [30]. Other teams use con-
straint logic programming to derive instances [31, 32]. Metamodels
are translated into constraint satisfaction problems and SAT/SMT
solvers are used to find an instance conform to the metamodel, or to
prove that no instance can be found. Here again, the coverage is not
targeted by these approaches. Gonzales-Perez et al. [33] use a sim-
ilar approach for the verification of EMF models. Finally, Sen et
al. [12] use Alloy [34] to generate instances satisfying a translated
version of the metamodel. However, the UML to Alloy translation
is restrictive and challenging as pointed-out in [35].
As these studies do not address the same problem, it is difficult
to compare our approach with them. Indeed, we propose a generic
model set generation framework that can be applied to various MDE
artifacts and tasks, with the concern of minimizing the size of the
generated sets.

In MDE testing, an extensive body of research work has focused
on model transformation. On the other hand, metamodel testing
has gathered less attention. Selim et al. [36], organize the transfor-
mation testing process into four phases: producing the test cases,
assessing the test cases, producing the oracle function, and per-
forming the test. To evaluate a test suite, authors use mainly a cov-
erage criterion applied on the transformation’s input space (see, for
instance, [9, 10, 27]). Gogolla et al. [28] decompose the coverage
using classifying terms. Mutation analysis is another way to assess
the generated input cases as described [37, 38]. Guerra et al. [39]
take the specification as a guide for test generation. Finally, oracle

definition is an open topic, and many oracle functions have been
proposed (see, for example, the recent work by Finot et al. [40]).
In these research contributions, a clear focus is put on the cover-
age definition. However, the different possibilities to achieve the
minimality of test suites are rarely discussed.

The other family of work in MDE testing target the metamod-
els. Obviously, the accuracy of a metamodel must be assessed in
order to reason about its modeling space. This vision is supported
by Sadilek et al. [8] who consider that the field is not investigated
enough. To test metamodels, Cadavid et al. [4] explore the bound-
aries of the modelling space using an mono-objective evolutionary
algorithm. Other teams focus on the interaction between modellers
and stakeholders [13]. Both exhibit the need to have representative,
yet small, sets of testing models.

The work of Cadavid et al. [4] falls in the category of search-
based testing. Search-based testing aims at defining one or more
functions that capture the testing objectives [41]. Search-based test
case generation is one of the most active fields in the search-based
software engineering community for many resulting in many ap-
proaches and tools. A quick look at the SBSE repository [42] shows
that more than 700 papers in SBSE, published between 1975 and
2015, are dealing with testing and/or debugging, and a large por-
tion of these papers relates to test case generation. Nonetheless, as
pointed out by Harman et al.in a recent study [43], multi-objective
search-based approaches are still scarce when it is clear that search
objectives in testing are contradictory (i.e., coverage and minimal-
ity) and cannot be combined efficiently into a unique fitness func-
tion.

The final family of research we discuss in this section is con-
cerned with the learning of MDE artifacts from examples. Learn-
ing by examples is a relatively new field [3] which finds its root in
the idea of a generative perspective on programming [44]. Model
transformation is the most studied field with the early work from
Balogh et al. [45] and Wimmer et al. [2]. In these papers, the au-
thors aim at abstracting mappings between two metamodel start-
ing from examples of source and target models. These mappings
can then be transformed into transformation programs as done by
Saada et al. [46]. Similarly, Sun et al. [47] investigated how to
learn transformations by means of demonstrations made by ex-
perts. Demonstration actions are modeled as examples from which
authors infer the transformation knowledge. Kessentini et al. [48]
learn model transformations from example by analogy. They do not
try to abstract the transformation knowledge, but rather propose a
concrete transformation for a given source model. More recently,
Faunes et al. [6] and Baki et al. [19, 18], learn directly the code
of transformations from the example. In addition to learn trans-
formations, examples were used to learn well-formedness rules by
Faunes et al. [5]. Finally, examples are used for manual modeling
and metamodeling activities [49, 14].

7. CONCLUSION
In this paper, we propose a generic framework to automatically

select model sets for various MDE tasks and for different purposes.
We model the model set selection as a multi-objective optimization
problem, and we solve it using the evolutionary algorithm NSGA-
II. Our framework can be customized for a specific task and pur-
pose by giving indications about the coverage criterion, which will
be later automatically assessed. The second customization aspect
consists in choosing one or more pre-defined minimality criteria.

We illustrate the use of our framework on the metamodeling task
with the testing purpose. We evaluated this application on small
and large metamodels and showed that the multi-objective strategy
offers a better alternative to random or mono-objective search.

As a future work, we are studying the impact of the selected
model sets on the efficiency of testing or learning MDE tasks.

8. REFERENCES
[1] D. C. Schmidt, “Model-driven engineering,” IEEE Computer

Society, vol. 39, no. 2, 2006.
[2] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler,

“Towards model transformation generation by-example,” in
40th Hawaii Int. Conf. on Systems Science, 2007, p. 285.

[3] K. Bąk, D. Zayan, K. Czarnecki, M. Antkiewicz, Z. Diskin,
A. Wąsowski, and D. Rayside, “Example-driven modeling:
Model = abstractions + examples,” in Proc. of the Int. Conf.
on Software Engineering, 2013, pp. 1273–1276.

[4] J. J. Cadavid, B. Baudry, and H. A. Sahraoui, “Searching the
boundaries of a modeling space to test metamodels,” in Proc.
of the Int. Conf. on Software Testing Verification and
Validation, 2012, pp. 131–140.

[5] M. Faunes, J. Cadavid, B. Baudry, H. Sahraoui, and
B. Combemale, “Automatically searching for metamodel
well-formedness rules in examples and counter-examples,”
in Proc. of the Int. Conf. on Model-Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, 2013,
pp. 187–202.

[6] M. Faunes, H. Sahraoui, and M. Boukadoum,
“Genetic-programming approach to learn model
transformation rules from examples,” in Proc. of the Int.
Conf. on Theory and Practice of Model Transformation,
2013, vol. 7909, pp. 17–32.

[7] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum,
and A. Ouni, “Design defects detection and correction by
example,” in Proc. of the Int. Conf. on Program
Comprehension, 2011, pp. 81–90.

[8] D. Sadilek and S. Weissleder, “Testing metamodels,” in Proc.
of the Eur. Conf. on Modelling Foundations and
Applications, 2008, vol. 5095, pp. 294–309.

[9] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. le Traon,
“Metamodel-based test generation for model
transformations: an algorithm and a tool,” in Int. Symp. on
Software Reliability Engineering, 2006. ISSRE ’06. 17th,
2006, pp. 85–94.

[10] F. Fleurey, B. Baudry, P.-A. Muller, and Y. Le Traon,
“Towards dependable model transformations: Qualifying
input test data,” Int. J. on Soft. and Systems Modeling, vol. 8,
no. 2, pp. 185–203, 2009.

[11] J. Mottu, S. Sen, M. Tisi, and J. Cabot, “Static analysis of
model transformations for effective test generation,” in Int.
Symp. on Software Reliability Engineering, 2012, pp.
291–300.

[12] S. Sen, B. Baudry, and J. Mottu, “Automatic model
generation strategies for model transformation testing,” in
Proc. of the Int. Conf. on Theory and Practice of Model
Transformation, 2009, vol. 5563, pp. 148–164.

[13] J. Sanchez-Cuadrado, J. de Lara, and E. Guerra, “Bottom-up
meta-modelling: An interactive approach,” in Proc. of the
Int. Conf. on Model-Driven Engineering Languages and
Systems, 2012, vol. 7590, pp. 3–19.

[14] J. J. Lopez-Fernandez, J. S. Cuadrado, E. Guerra, and
J. de Lara, “Example-driven meta-model development,” Int.
J. on Soft. and Systems Modeling, pp. 1–25, 2013.

[15] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven
software engineering in practice,” Synthesis Lectures on
Software Engineering, vol. 1, no. 1, pp. 1–182, 2012.

[16] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and
J.-M. Mottu, “Barriers to systematic model transformation
testing,” Communications of the ACM, vol. 53, no. 6, pp.
139–143, 2010.

[17] M. Kessentini, H. Sahraoui, and M. Boukadoum,
“Example-based model-transformation testing,” Automated
Soft. Eng., vol. 18, no. 2, pp. 199–224, 2011.

[18] I. Baki and H. Sahraoui, “Multi-step learning and adaptive
search for learning complex model transformations from
examples,” ACM Trans. on Soft. Eng. and Methodology,
vol. X, p. 36, 2015.

[19] I. Baki, H. Sahraoui, Q. Cobbaert, P. Masson, and M. Faunes,
“Learning implicit and explicit control in model
transformations by example,” in Proc. of the Int. Conf. on
Model-Driven Engineering Languages and Systems, 2014,
vol. 8767, pp. 636–652.

[20] C. Jeanneret, M. Glinz, and B. Baudry, “Estimating
footprints of model operations,” in Proc. of the Int. Conf. on
Software Engineering, May 2011, pp. 601–610.

[21] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Proc. of the Int. Conf. on
System Testing Verification and Reliability, vol. 22, no. 5, pp.
297–312, August 2012.

[22] J. J. Cadavid Gómez, “Assistance à la méta-modélisation
précise,” Ph.D. dissertation, Rennes 1, France, 2012, thèse de
doctorat dirigée par Jézéquel, Jean-Marc et Baudry, Benoit.

[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast
elitist non-dominated sorting genetic algorithm for
multi-objective optimisation: NSGA-II,” in Int. Conf. on
Parallel Problem Solving from Nature - PPSN, 2000.

[24] T. J. Ostrand and M. J. Balcer, “The category-partition
method for specifying and generating fuctional tests,”
Commun. ACM, vol. 31, no. 6, pp. 676–686, 1988.

[25] H. Wu, R. Monahan, and J. F. Power, “Metamodel instance
generation: A systematic literature review,” CoRR, vol.
abs/1211.6322, 2012.

[26] A. Murashkin, M. Antkiewicz, D. Rayside, and
K. Czarnecki, “Visualization and exploration of optimal
variants in product line engineering,” in Int. Software
Product Line Conference. ACM, 2013, pp. 111–115.

[27] C. A. Gonzalez and J. Cabot, “Test data generation for model
transformations combining partition and constraint analysis,”
in Proc. of the Int. Conf. on Theory and Practice of Model
Transformation, 2014, vol. 8568, pp. 25–41.

[28] M. Gogolla, A. Vallecillo, L. Burgueno, and F. Hilken,
“Employing classifying terms for testing model
transformations,” in Proc. of the Int. Conf. on Model-Driven
Engineering Languages and Systems, 015, pp. 312–321.

[29] K. Ehrig, J. Koster, G. Taentzer, and J. Winkelmann,
“Generating instance models from meta models,” in Formal
Methods for Open Object-Based Distributed Systems, 2006,
pp. 156–170.

[30] B. Hoffmann and M. Minas, “Defining models - meta models
versus graph grammars,” ECEASST, vol. 29, 2010.

[31] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, and
C. Nebut, “A csp approach for metamodel instantiation,” in
Int. Conf. on Tools with Artificial Intelligence, 2013.

[32] H. Wu, “Generating metamodel instances satisfying coverage
criteria via smt solving,” in Proc. of the Int. Conf. on
Model-Driven Eng. and Soft. Development, 2016, pp. 40–51.

[33] C. A. González Pérez, F. Buettner, R. Clarisó, and J. Cabot,

“EMFtoCSP: A Tool for the Lightweight Verification of
EMF Models,” in Formal Methods in Soft. Eng.: Rigorous
and Agile Approaches (FormSERA), 2012.

[34] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[35] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
UML2Alloy: A Challenging Model Transformation.
Springer Berlin Heidelberg, 2007, pp. 436–450.

[36] G. M. K. Selim, J. R. Cordy, and J. Dingel, “Model
transformation testing: The state of the art,” in Workshop on
the Analysis of Model Transformations, 2012, pp. 21–26.

[37] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Trans. on Soft. Eng.,
vol. 37, no. 5, pp. 649–678, 2011.

[38] V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry,
and J.-L. Dekeyser, “Towards an automation of the mutation
analysis dedicated to model transformation,” Software
Testing, Verification and Reliability, vol. 25, no. 5-7, pp.
653–683, 2015.

[39] E. Guerra, “Specification-driven test generation for model
transformations,” in Proc. of the Int. Conf. on Theory and
Practice of Model Transformation, 2012, pp. 40–55.

[40] O. Finot, J.-M. Mottu, G. Sunyé, and C. Attiogbé, “Partial
test oracle in model transformation testing,” in Proc. of the
Int. Conf. on Theory and Practice of Model Transformation,
2013, pp. 189–204.

[41] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn,
“An orchestrated survey of methodologies for automated
software test case generation,” J. Syst. Softw., vol. 86, no. 8,
pp. 1978–2001, 2013.

[42] Y. Zhang, M. Harman, and A. Mansouri, “The SBSE
repository: A repository and analysis of authors and research
articles on search based software engineering.”

[43] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open
problems and challenges for search based software testing,”
in Proc. of the Int. Conf. on Software Testing Verification and
Validation, 2015, pp. 1–12.

[44] K. Czarnecki, E. Ulrich, and P. Steyaert, “Beyond objects:
Generative programming,” in ECOOP’97 Workshop on
Aspect-Oriented Programming, Jyväskylä, Finland, 1997.

[45] Z. Balogh and D. Varró, “Model transformation by example
using inductive logic programming,” Int. J. on Soft. and
Systems Modeling, vol. 8, no. 3, pp. 347–364, 2009.

[46] H. Saada, X. Dolques, M. Huchard, C. Nebut, and H. A.
Sahraoui, “Generation of operational transformation rules
from examples of model transformations,” in Proc. of the Int.
Conf. on Model-Driven Engineering Languages and
Systems, 2012, pp. 546–561.

[47] Y. Sun, J. White, and J. Gray, “Model transformation by
demonstration,” in Proc. of the Int. Conf. on Model-Driven
Engineering Languages and Systems, 2009, pp. 712–726.

[48] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. B.
Omar, “Search-based model transformation by example,” Int.
J. on Soft. and Systems Modeling, vol. 11, no. 2, pp.
209–226, 2010.

[49] D. Zayan, M. Antkiewicz, and K. Czarnecki, “Effects of
using examples on structural model comprehension: a
controlled experiment,” in Proc. of the Int. Conf. on Software
Engineering, 2014, pp. 955–966.

	Introduction
	Problem Statement
	Task Examples
	Commonalities and Terminology

	Framework
	Model set Selection Objectives
	Model-set Selection as MOOP

	Case Study: Metamodel Testing
	Evaluation

	Evaluation Results
	RQ1: comparison between our approach and a random search algorithm
	RQ2: comparison between our approach and mono-objective
	RQ3: comparison between combinations of the minimality objectives
	Performance
	Discussion

	Related Work
	Conclusion
	References

