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Abstract—We propose a novel approach for solving the prob-
lem of coevolution between metamodels and OCL constraints.
Unlike existing solutions, our approach does not rely on prede-
fined update rules and explicit tracking of high level changes to
the metamodel. Rather, we pose it as a multi-objective optimiza-
tion problem, exploring the space of possible OCL modifications
to identify solutions that (a) do not violate the structure of the
new version of the metamodel, (b) minimize changes to existing
constraints, and (c) minimize loss of information. Finally, we
recommend an appropriate subset of solutions to the user. We
evaluate our approach on three cases of metamodel and OCL
coevolution. The results show that we recommend accurate solu-
tions for updating OCL constraints, even for complex evolution
changes.

I. INTRODUCTION

The creation of modern software systems often depends
on the use of domain-specific languages (DSLs) to empower
domain experts to define and manipulate software artifacts
using familiar abstractions and notations [1]. This is commonly
accomplished using the Model-Driven Engineering (MDE)
paradigm [2], whereby the abstract syntax of the DSL is
defined using a metamodel that captures the main domain
concepts, their properties and their relationships. The creation
of DSLs typically involves multiple development iterations,
meaning that the metamodel is modified often before reaching
maturity. Such frequent changes in the metamodel inadver-
tently render obsolete the versions of dependent artifacts
such as models, transformations, and well-formedness rules,
typically expressed as OCL constraints [3]. To match the pace
of DSL development, such artifacts have to be updated after
each metamodel change, which is time-consuming and error-
prone. This implies the need for significant automation for the
coevolution of metamodels and related artifacts. In this paper,
we focus specifically in the coevolution of OCL constraints in
response to metamodel change.

To better illustrate the OCL coevolution problem, we in-
troduce a scenario that we will use throughout the paper.
Consider the following example, taken from [4] and [5],
in which a simplified State Machine metamodel, shown in
Figure 1(a) evolves to the one shown in Figure 1(b). Between
the two versions, several different kinds of changes have
taken place. Some are atomic: e.g., the property name has
been added to the class Event, and the reference effect has
been removed from the class Transition. Other changes are
more sophisticated: e.g., the abstract class IDElement has been

(a) Version 1

(b) Version 2

Fig. 1: Evolution of the State Machine metamodel.

removed, the reference trigger in class Transition has been
renamed event and its cardinality has changed. Finally, the
example contains one complex modelling change: the typing
of States using the enumeration StateKind via the attribute kind
has been supplanted by a complex class hierarchy, involving
the new classes CompositeState, PseudoState, FinalState, and
InitialState.

We now examine what constraints are impacted by the
metamodel changes. The renaming of the reference trigger
affects the constraint C1:

context Transition inv trigger_event:
Transition.allInstances()->forAll( t |
t.source=self.source and t.trigger=self.trigger
implies self=t)
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Fig. 2: Approach Overview.

This can be fixed by simply replacing the two occurrences
of the string “trigger” by the string “event”. However, the
following constraint C2, enforcing that initial states do not
have incoming transitions, requires a more subtle update as it
involves a complex structural change in the metamodel:
context State inv kind:
self.kind = StateKind::InitialState

implies self.incoming->size() = 0

Rather than testing the value of the attribute kind, the new
constraint C ′2 must test the type of the State instance:
context State inv kind:

self.oclIsTypeOf(InitialState)
implies self.incoming->size() = 0

Several approaches for coevolving OCL constraints have
been developed (e.g., [6], [7], [8], see Section VII). These
approaches typically compare the two versions of the meta-
model to detect semantically significant high-level changes,
such as additions, deletions, refactoring of elements, etc. Then
they use predefined rules for each type of change to update
the constraints. Some approaches rely on manual change
detection [9], [10], which can be difficult when dealing with
large metamodels and complex changes. Others attempt to
automate change detection [3] and thus rely on important
assumptions such as that a change sequence has been recorded
(thus precluding static comparisons between versions) or are
based on heuristics that may not apply to any evolution con-
text. Regardless of the method of change detection, however,
all techniques rely on a set of predefined, context-dependent
update rules.

In this paper, we propose a novel two-step approach to
the coevolution of metamodels and OCL constraints, shown
schematically in Figure 2. Unlike existing approaches, ours
does not rely on predefined update rules and explicit tracking
of high level metamodel changes. First, we use a multi-
objective genetic algorithm to explore the space of possible
OCL modifications to identify solutions that (a) do not violate
the structure of the new version of the metamodel, (b) min-
imize changes to existing constraints, and (c) minimize loss
of information. Then, we recommend an appropriate subset
of solutions to the user. We developed two recommendation
strategies: using a clustering algorithm based on the similar-
ities between the identified solutions, and a ranking based
on solutions’ objective values. Evaluating our approach on
three coevolution cases, we find that it produces accurate solu-
tion recommendations, even for complex metamodel changes.
Specifically, we make the following contributions:

1) We propose a novel approach to the problem of coevolv-
ing OCL constraints during the evolution of metamodels that
does not depend on the detection of changes in the metamodel.

The problem is that this sort of detection can be tedious and
error prone.

2) We propose to change the output of coevolution tools:
instead of producing a single solution, we generate a set of
potential candidate solutions and give the user the choice of
the most appropriate one. This is advantageous because (a) it
does not constrain the user and (b) it allows for serendipity and
creativity (e.g., the user could decide to combine one or more
solutions to produce something that the automated technique
did not generate).

3) We propose to use meta-heuristic search, using genetic
algorithms. This means that we expand the space of solutions
that an automated tool for coevolution can traverse, allowing
for the mechanical creation of potentially innovative solutions.
This is because of the randomness introduced by the algorithm.

4) We propose an extensible framework for incorporating
new strategies for guiding the heuristic search. These take
the form of genetic mutation operators expressed at the meta-
metamodel level. This allows incorporating existing and new
coevolution strategies for specific contexts.

5) We propose an approach for presenting a large set of
acceptable candidates in a way that is user-friendly. We do this
by ranking the set of solutions or clustering it and generating
representative exemplars for each cluster. In this way, the user
can quickly shift through a large set of potential solutions.

The remainder of the paper is organized as follows: in
Section II, we give basic background definitions. We describe
the generation of solutions in Section IV and the selection
of recommendations in Section V. We evaluate our approach
in Section VI. We discuss related work in Section VII, and
conclude with a discussion on lessons learned in Section VIII.

II. BACKGROUND

A. Metamodel-OCL Coevolution

Metamodel coevolution refers to the process of adapting
and correcting a set of modelling artifacts in response to
the evolution of the metamodel on which they are strongly
dependent [8]. In this paper, we focus on MOF metamod-
els [11], implemented in EMF [12] and metamodel-level well-
formedness constraints expressed in OCL [13]. In the case
of such constraints, the coevolution problem can be posed as
follows: given a metamodel M and a set S of OCL constraints
over M , if M evolves to a new version M ′, how should S be
evolved to a new version S′? Below, we use primes to refer
to concepts relevant to the new version.

Let ins(M) be the –potentially infinite– set of all models
that can be instantiated from M . In the following, we call such
models “instance models”. Then the set of constraints S parti-
tions ins(M) into two disjoint subsets: ins(M) = acc(M) t
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Fig. 3: Metamodel–OCL coevolution.

rej(M), where acc(M) contains the instance models of M
that satisfy the constraints in S (“accepted”) and rej(M)
those that do not (“rejected”). We show this schematically in
Fig. 3(a), where acc(M) = {b, e} and rej(M) = {a, d}.

The set of instance models of the new metamodel version
M ′ can be coevolved [14] from ins(M) to the new set
ins(M ′), shown in Fig. 3(b). The problem of coevolving S can
thus be naïvely posed as identifying set of OCL constraints
S′ that partition ins(M ′) such that acc(M ′) = (acc(M))′

and rej(M ′) = (rej(M))′. However, the coevolution of
instance models does not necessarily produce a one-to-one
correspondence between ins(M) and ins(M ′).

Assume for example a toy metamodel M1 containing a
single metaclass K1. A developer evolves it to M ′1 by adding a
new metaclass, such that M ′1 contains the metaclasses K ′1,K

′
2.

A model c that only contains instances of the metaclass
K ′2 conforms to M ′1, and is thus in ins(M ′1). Should it be
placed in acc(M ′1) or rej(M ′1)? There is no obvious model
in ins(M1) from which to make this decision. Consider
also the reverse scenario: the metamodel M1 contains the
metaclasses K1,K2 and is evolved by deleting the metaclass
K2 such that M ′1 only contains the metaclass K ′1. Assume
two instance models d and e in ins(M1), where d contains
just the elements {k1 : K1, k2d : K2} and e contains just the
elements {k1 : K1, k2e : K2}. Assume also that for whatever
reason, the OCL constraints S of M1 partition ins(M1) such
that d ∈ acc(M1) and e ∈ rej(M1). Since in M ′1 the metaclass
K2 is deleted, their coevolved versions coincide to a model de′

that simply contains the element k1 : K1. Should we coevolve
the constraints to a new set S′ that place this model in acc(M ′1)
(because d ∈ acc(M1)) or in rej(M ′1) (since e ∈ rej(M1))?

We illustrate this ambiguity in Fig. 3(b), where we show that
there exist multiple possible partitions of ins(M ′). The choice
of appropriate partition depends on the intent of the developer
responsible for the evolution of the metamodel. This intent
is the developer’s intuition about which of the models that
can be instantiated from M ′ should be accepted by the set S′

of coevolved OCL constraints and which should be rejected
(put in acc(M ′) and rej(M ′) respectfully). Unless this intent
is made explicit, the coevolution of OCL constraints cannot

be fully automated. However, making it explicit may not be
possible without rewriting the set of OCL constraints S′ from
scratch, or doing the coevolution manually. We thus consider
the automated coevolution problem as providing support to the
developer in order to identify the set S′ of OCL constraints that
best reflects her intent. In this paper, we use multi-objective
optimization to evolve from S a set of candidate solutions
for S′ and then use a recommendation system to help the
developer make a decision.

B. Multi-objective Optimization

In this section, we first introduce concepts related to multi-
objective optimization and then describe NSGA-II [15], one
of the widely used multi-objective optimization algorithms.
Finding the solution to an optimization problem consists
of finding optimal or near-optimal solutions with respect to
some goals expressed in quality functions to maximize or to
minimize a set of objective functions.
Definition 1 (MOP). A multi-objective optimization problem
(MOP) entails minimizing or maximizing an objective function
vector f(x) = [f1(x), f2(x), ..., fM (x)] of M objectives under
some constraints.

The set of feasible solutions, i.e., those that satisfy the
problem constraints, defines the search space Ω. The resolution
of a MOP consists in approximating the whole Pareto front.
Definition 2 (Pareto optimality). In the case of a minimiza-
tion problem, a solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω
and ∀m ∈ I = {1, ...,M} either fm(x) = fm(x∗) or there is
at least one m ∈ I such that fm(x) > fm(x∗).

In other words, x∗ is Pareto optimal if no feasible solution
exists, which would improve some objective without causing
a simultaneous worsening in at least another one.
Definition 3 (Pareto dominance). A solution u =
(u1, u2, ..., un) is said to dominate another solution v =
(v1, v2, ..., vn) (denoted by f(u) � f(v)) iff f(u) is partially
less than f(v). In other words, ∀m ∈ {1, ...M} we have
fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where fm(u) < fm(v).
Definition 4 (Pareto optimal set). For a MOP f(x), the Pareto
optimal set is P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) � f(x)}.
Definition 5 (Pareto front). For a given MOP f(x) and its
Pareto optimal set P∗ the Pareto front (also called Pareto
optimal front) is PF ∗ = {f(x), x ∈ P ∗}.

In this paper we use the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [15], one of the most-used multi-
objective evolutionary algorithms (EAs) in tackling real-world
problems, including software engineering ones [16] to find
trade-offs between different objectives. Fig. 4 describes the
process. It begins by generating an offspring population from
a parent one by means of variation operators such that both
populations have the same size. NSGA-II defines two types
of variation operators: crossover and mutation. The goal of
crossover is to find new, and possibly better, combinations
of the genetic material already present in the population.
Mutation allows injecting new genetic material that potentially
improves the population of solutions.
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After applying variation operators, NSGA-II ranks the
merged population (parents and children) into several non-
dominance layers, called fronts, as depicted in Fig. 5. Non-
dominated solutions are assigned a rank of 1 and constitute the
first layer (Pareto front). After removing solutions of the first
layer, the non-dominated solutions form the second layer and
so on and so forth until no non-dominated solutions remain.

After assigning solutions to fronts, each solution is assigned
a diversity score, called crowding distance, inside each front.
This distance defines a partial ranking inside the front which
is used later in the algorithm to favour solutions that are far
from the others in terms of objective values. A solution is then
characterized by its layer and its crowding distance inside the
layer.

To finish an iteration of the evolution, we perform the
environmental selection to form the parent population for the
next generation by picking half of the solutions. The solutions
are included iteratively from the Pareto front to the lowest
layers. If half of the population is reached inside a front
then the crowding distance is used to complete the parent
population. Fig. 5 shows an example of the selection process
for two objectives. The solutions of the four first layers are
included but not all those of 5th one. Some solutions of the
5th layer are selected based on their crowding distance values.
In this way, most crowded solutions are the least likely to be
selected; thereby emphasizing population diversification. To
sum up, the Pareto ranking encourages convergence towards
the near-optimal solution while the crowding ranking empha-
sizes diversity.

NSGA-II halts once a stopping criterion is satisfied. In this
work, we use as stopping criterion a predefined number of
iterations (generations). Other criteria can be used, such as
convergence values for the objective functions, or a number
of iterations without fitness improvement.

In the following, we describe how we adapted the NSGA-II
algorithm to the problem of Metamodel–OCL coevolution.

III. APPROACH SETUP

Our approach assumes as input two versions M and M ′ of
a metamodel. We do not assume knowledge of the sequence of

f2

f1
Layer1 Layer2

Layer3

Layer4

0

Fig. 5: NSGA-II Selection Mechanism.

changes that were made to M to turn it into M ′. However, we
assume that the two versions are indeed related via evolution.
We additionally assume as input a set S of OCL constraints
for M .

As a preprocessing step, we compute the set D of atomic
differences between the two versions. We do this in order to
identify the constraints in S that are affected by the metamodel
evolution. Specifically, we compare M and M ′ and register
all metamodel elements that were deleted, added, or had
their multiplicity modified between the two versions. Unlike
existing work (see Section VII), computing atomic differences
does not require the identification of conceptually high-level
metamodel changes. Rather, it can be done directly from
the two metamodel versions. For example, for the two State
Machine metamodel versions in Fig. 1, the set D contains
elements that were added, such as the containment association
states between State and the new class CompositeState. It also
contains elements that were deleted, such as the enumeration
StateKind, or the generalization link between the class State
and IDElement.

In general, the constraints in the set S are not applicable to
M ′, since they may refer to elements of M that have since
changed (i.e., elements in D). For example, the constraint C1

cannot be applied to the new version of the State Machine
metamodel, since it refers to the element trigger, which has
been changed to event. Our objective is thus to produce
candidate sets of OCL constraints S′ for M ′ that can be
evolved from S.

Our approach must obey the following requirements: (a)
the parts of OCL constraints in S that are not affected by
the evolution (i.e., do not refer to elements in D) should
not be modified since information contained in the original
constraints in S should be preserved as much as possible, (b)
changed elements in D should be prioritized when computing
OCL modifications, (c) generated constraints should have as
few syntax errors as possible.

IV. GENERATIVE COEVOLUTION OF SOLUTIONS

We adapt the OCL coevolution problem into a multi-
objective optimization problem that we solve using NSGA-II.
In the following, we use the metaphors of genetic algorithms
to show: (a) how a solution is represented and created; (b) how
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Fig. 6: Abstract syntax tree of the constraint C1 in Section I

solutions reproduce with each other at each iteration, and
(c) how the fitness of a solution is measured.

A. Solution Representation and Solution Creation

A solution to our problem is a set of OCL constraints. In our
metaphor, a set of constraints is a genetic entity, containing K
ordered chromosomes (individual constraints). We only con-
sider constraints affected by the evolution, ignoring all others;
in the following, whenever we refer to S, we refer to the set of
only affected constraints. The order of the chromosomes helps
to uniquely identify each constraint within the solution. Each
individual constraint is represented as an Abstract Syntax Tree
(AST), using the OCL metamodel provided by the Eclipse
Modelling Framework [17]. For example, the AST of the
constraint C1 is shown in Fig. 6.

To derive the initial generation G0 of N solutions, we first
derive N/2 solutions by applying random mutations to S. To
these, we then apply crossovers to derive N/2 more solutions.
In subsequent iterations of the NSGA-II algorithm, we apply
genetic operations on each generation Gi to derive the new
generation Gj .

B. Genetic Operators

When evolving a population of solutions, NSGA-II derives
new solutions from existing ones using two kinds of operators:
crossover and mutation.

1) Crossover operator: As illustrated in Fig. 7, our
crossover operator uses a single cut-point crossover. Each
parent solution is divided into two constraint subsets using
a randomly selected cut point. The constraints in each subset
must preserve their order. Then the constraint subsets of the
parent solutions are exchanged to form two new solutions.

2) Mutation operators: We propose an extensible frame-
work, where various coevolution scenarios can be expressed
as individual mutation operators. We have implemented five
such operators, based on examples of metamodel evolution
available to us. This list is not exhaustive; in the future, we
intend to augment it with update rules from published literature
on OCL coevolution (see Section VII).

Our approach assumes that a mutation operator store con-
taining all possible mutations is at hand. Given a randomly
selected OCL element e in a solution, we randomly select a

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5

C

2-1

C

2-2

C

2-3

C

2-4

C1-4 

mutant

Parent 1

Parent 2

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5

C

2-1

C

2-2

C

2-3

C

2-4

Point-cut

Child 1

Child 2

Crossover

C

1-1

C

1-2

C

1-3

C

1-4

C

1-5Parent

Mutation
C

1-1

C

1-2

C

1-3

CM

1-4

C

1-5
Child

: ConstraintC

X-X

C

2-5

C

2-5

Fig. 7: Crossover and mutation adapted in our framework

mutation operator from the store and apply it to the solution.
This means that, while our framework is capable of producing
solutions for any coevolution scenario, it does not enforce a
particular coevolution strategy to the user.

We have implemented the following mutation operators:

• Renaming We define two renaming strategies: (a) chang-
ing the name of a single occurrence of e in the constraint,
or (b) changing all its occurrences in the set of con-
straints. The new name is selected from the vocabulary of
the evolved metamodel M ′, with the following weights:
elements added during evolution are considered first
(weight 10), followed by elements with same type as e
(weight 5), elements with same source (only for edge type
elements, weight 5), and all other M ′ elements (weight
1). This order reflects the intuition that when applying a
Rename operator, the new name should most likely be
taken from the set of added identifiers, then from the set
of elements with the same type or elements with the same
source, and finally from the set of all other elements. The
precise numerical values where chosen empirically for the
evaluation that we performed.

• Context Change The class context of the OCL constraint
containing e is replaced by some other class in M ′. For
example, the context of constraint C1 may change from
Transition to Event.

• Pruning The element e is deleted, while maintaining
the logical skeleton of the constraint. We do this by
identifying the first ancestor a of e in the OCL abstract
syntax tree that is of type Boolean. That ancestor and its
entire sub-tree is then replaced by a boolean primitive,
i.e., true or false. Specifically, if a is an operand of a or
statement, it is replaced by false; if it is an operand of
an and or implies statement, it is replaced by true. For
example, assume e = self.trigger in the constraint C1. Its
first Boolean ancestor in the AST of C1 is the structure:
"self.trigger = t.trigger". Applying pruning will therefore
result in replacing this structure with true. In Fig. 6, we
indicate the elements of the structure to prune with bold
borders.

• Change Typing Method If e refers to an Enumeration
that has been deleted from M , and if M ′ contains classes
whose names are the same as the values of the element
referred by e, this mutation can happen. It consists of
equality assertions on types, replaced by their homologue
in the new type hierarchy using the method oclIsTypeOf.
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Fig. 8: Example application of the “Indirection Insertion”
mutation operator

The evolution of C2 into C ′2 in Section I is an example
of this change. We do this instead of creating a new
constraint with the class context of e’s referred element to
avoid modifying the chromosomic structure of the genetic
entity (i.e., the number of constraints in a solution), while
maintaining semantics the same.

• Indirection Insertion If (a) e refers to a metamodel
element f that was deleted during evolution, and (b)
a metamodel element f ′ with the same name is found
somewhere else in M ′, and (c) a link l exists between
the source class of f and the source class of f ′, then
an indirection l can be inserted between the source of
e and f ′. As illustrated in Fig. 8, in the new version
of Employee, the nameCategory (f ) has been moved
into the class Category (the source of f ′). Consequently,
the excerpt of OCL constraint referring to that feature
should be updated by inserting an indirection through
category (l).

Finally, if the genetic reproduction fails to produce new
genetic material (i.e., crossover and mutations do not produce
new solutions) we re-inject the initial set S. We found that this
strategy helped the algorithm step out of certain local minima.

C. Objective Functions

To assess the fitness of each potential solution (i.e., set
of constraints, evolved from the initial set) with respect to
the coevolution problem, we evaluate it using three objective
functions:
• f1 – Number of changes: For each solution, we record

the number of mutations since S. Each mutation is
additionally assigned a (user configurable) weight. By
default each mutation has weight 1, but pruning has
weight 2. The algorithm thus favours solutions with fewer
changes in order to first explore solutions close to S. The
additional default weight of pruning directs the algorithm
to first consider other combinations of mutations before
resorting to this more radical change.

• f2 – Number of syntax errors: Since the first generation
is based on S, it likely contains syntax errors with
respect to the evolved metamodel version M ′. Additional
syntax errors can also be inadvertently introduced when
randomly applying mutations. Since the goal is that the

Pareto front

Solutions

Recommendations

Solutions closest

to the centroid 

of their cluster

Centroïd

Abstract centre

of a cluster

ClusteringFig. 9: Clustering of solutions: Solutions in the Pareto front
are grouped by relative syntactic distance between each other’s

target solution S′ is correct with respect to M ′, it should
by definition be free of syntax errors. Syntax errors can be
fixed by other mutations during evolution. The algorithm
thus favours solutions with fewer syntax errors.

• f3 – Information loss: To ensure information is not need-
lessly lost, we record the metamodel elements removed
from the constraints in each solution. If an element of
M was used in constraints in S, and it is not removed
in M ′, then it should appear in generated solutions. For
each solution we record the number of lost elements. The
algorithm thus favours solutions with less information
loss

V. RECOMMENDING SOLUTIONS

Once the NSGA-II algorithm stops, we have in the final
generation a near-optimal set of solutions (Pareto), represent-
ing potential sets of OCL constraints appropriately adapted
for the evolved metamodel. However, this set can be large. For
example, in the experiments used in Section VI, the Pareto sets
often include more than 50 solutions. It is therefore essential
to provide users with additional support for understanding
and managing this set. We propose to use a recommendation
system that provides users with a few representative solutions.
This way, users can quickly peruse the large set of near-
optimal solutions and select a desirable candidate. To this end,
we explore two alternative recommendation strategies.

A. Ranking strategy

The first strategy consists in taking, for each solution, the
weighted average of the three objectives and use the resulting
value to rank the solutions. Aggregating the three objectives
can be done because all of them are defined within the
same order of magnitude. Then the k top-ranked solutions
are recommended.

B. Clustering strategy

As illustrated schematically in Fig. 9, the second strategy
works by clustering the Pareto set to produce subsets of similar
solutions and choosing representative exemplars from each one
for presentation to the user.

First, we represent each solution by a N -dimensional dif-
ference vector, where N is the size of the Pareto set. The
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difference vector encodes how different a solution is from
other solutions. As a measure of difference, we use the
Levenshtein distance [18] between the textual representations
of the OCL constraints in the solutions. The Levenshtein
distance of a string s1 from a string s2 is the number of
deletions, insertions, and substitutions required to transform s1
to s2. For example, the two constraints C2 and C ′2 enforcing
that initial states do not have incoming transitions in Section I
have Levenshtein distance 18.

Then, we use the k-means algorithm [19] to cluster the set
of difference vectors. Given a parameter k, which indicates
the number of clusters and, hence, the number of solutions to
recommend, k-means partitions the set to k clusters. This is
done by computing an abstract “mean vector” for each cluster
and placing each difference vector in the cluster containing
the mean vector nearest to itself.

Finally, we select one representative solution from each
cluster. To do this, we select the difference vector with the
smallest distance from the mean vector of its cluster. The set
of representative solutions is presented to the user. As the
number k of clusters is a configuration parameter, the user
can control how many solutions she is interested in inspecting
before making a decision.

VI. EMPIRICAL EVALUATION

As discussed in the Section I, existing Metamodel–OCL
coevolution approaches are based of detecting conceptually
high-level changes in the metamodel and use predetermined
OCL updating strategies for each type of change. Our eval-
uation therefore aims to show that our approach is able
to recommend accurate solutions to the OCL coevolution
problem without depending on the detection of such high-level
changes or predetermined update strategies. More specifically,
we investigate the following research questions:

RQ0: Are the results of our approach attributable to the
search strategy or to the number of explored so-
lutions? To answer this question, we compare the
best solutions generated (a) using our approach, and
(b) using random search over the same solution
space (i.e., exploring the same amount of solution
candidates).

RQ1: To which extent our approach finds the expected so-
lution? To answer this question, we consider known
coevolution scenarios, and check if the expected so-
lution is in the Pareto set generated by our approach.

RQ2: To which extent our approach recommends the ex-
pected solution? We answer this question by check-
ing whether the expected solution is contained in
the subset of solutions selected by our recommender
from the Pareto set for presentation to the user.

A. Experimental Setting

Coevolution Cases. We selected three metamodel coevolution
cases (Family Structure, State Machine, and Project Manage-
ment) that demonstrate different levels of change complexity

and that require diverse OCL updating alternatives. We then
used these as ground truth for our evaluation.

Family Structure: This metamodel defines a schema for
representing family structures. It has been used as an il-
lustrative example in various publications in the software
modelling research literature, such as [20], [21]. We use this
case to experiment with metamodel changes that do not require
sophisticated updating of the OCL constraints. The initial
version of the metamodel contains 9 OCL constraints. Of
these, 4 are affected by metamodel evolution. The required
updating operations include: renaming attributes, pruning a
portion of a constraint because the involved attribute was
removed, and deleting a constraint whose context class was
removed from the metamodel.

State Machine: We describe the metamodel evolution of
this case in Section I. 7 OCL constraints complement the
initial version of the metamodel1 and 5 are affected by its
evolution2. In addition to some basic updating operations, OCL
coevolution also requires a complex change in the way certain
constraints evaluate object types.

Project Management: This case, described in [22], rep-
resents a project management structure. It involves 8 OCL
constraints from which 6 are impacted by the evolution. We
included this case as an example of complex metamodel evo-
lution. Specifically, the metamodel changes include splitting
a class into three classes, creating a new abstract class, and
moving attributes from the initial classes to the created ones.
Thus, in addition to basic updating operations, the constraints
require introducing indirection to test the moved attributes.
Algorithm Parameters. We used the following NSGA-II pa-
rameters: we set the stop criterion to 300 iterations, population
size of 100 solutions per iteration, and crossover and mutation
probabilities 0.9 and 0.6 respectively. For the weighted average
recommendation strategy, we used the following weights: 40%
for the syntax errors (f2) and the information loss (f3), and
20% for the number of changes (f1). The rationale behind
these weights is that we regard syntactic correctness and
information loss as primary objectives, whereas we consider
the number of changes to not diverge much from the initial
constraints. Finally, we varied the size of the set of solutions
produced by the recommender for presentation to the user from
3 to 20 solutions.
Validation Method. To answer RQ0, we performed 30 execu-
tions to account for the probabilistic nature of our algorithm.
For each execution, our algorithm explores 15050 candidate
solutions (initial iteration of 100 solutions plus 299 iterations
requiring the creation of 50 solutions each, i.e., half of the
population of each generation is borrowed from the previous
generation). We then also generated 15050 random solutions
using the same technique as for the creation of the initial
population, as described in Section IV-A. We then created
a Pareto set for the random search using the dominance
relationship as defined in Section II.

1https://github.com/atlanmod/LazyOcl_StateMachineExample
2http://ecariou.perso.univ-pau.fr/contracts/exec-contract.html
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TABLE I: Statistical comparison of results between random
search and our approach on three metamodel coevolution
scenarios.

Average Mann Witney
p-value

Effect size
Cohen’s dRandom

search
Our

Approach
Family 2,25 3,97 <0,001 4,35
State

Machine 1,17 4,53 <0,001 4,87

Project
Management 1,83 4 <0,001 3,11

For each of the two searches (our algorithm and random
search) and each execution, we determine how many OCL
constraints were fixed correctly by comparing each expected
constraint with the candidates in the Pareto set SP . For a
constraint Ci of a metamodel M that needs to be updated and
its ground truth equivalent C ′i in the evolved metamodel M ′,
we say that Ci is correctly fixed if ∃Cij ∈ SP | Cij = C ′i.
Two OCL constraints are equal if the Levenshtein distance is 0
(cf. Section V).

Finally, we use the Mann-Whitney test to check if there is
a significant difference between the results of our algorithm
and those of a random search on the 30-executions samples.

To answer RQ1, we look at the distribution of the number
of correctly updated constraints over the 30 executions of our
algorithm, inside the Pareto set. We say that a constraint whose
syntax exactly matches the expected evolved version has been
correctly updated. The more often our algorithm is able to find
a high number of correctly updated constraints, the more its
results can be used to generate recommendations to the user.

To answer RQ2, we compare the two recommendation
strategies described in Section V, based on their ability to sug-
gest the expected updating solution within a limited number
of recommendations. We want to assess whether presenting
more recommendations to the user means that we also show
more correctly fixed constraints. We thus compare the accuracy
of the two recommendation strategies with the Pareto set for
increasing number of recommendations.

B. Results and Interpretation

RQ0: Is our approach better than a random search? We
summarize our findings in Table I. The results indicate that for
the three validation cases, our approach finds far more correct
solutions than the random search. For example, in the case
of the State Machine metamodel, in which 5 constraints are
impacted by the evolution, random search finds on average
1.17 correctly-fixed constraints, compared to 4.53 found by
our approach. Similar differences are observed for the two
other cases. All differences are statistically significant with a
p-value < 0.001. In addition to the statistical significance,
the effect size, which measures the importance of the dif-
ference relatively to the sample distributions, is very large
(i.e., between 3.11 and 4.87). Indeed, according to Sawilowsky
in [23], an effect greater than 2 is consider as very large.
RQ1: How efficient is our approach in finding coevolved OCL
constraints? The results in Table I show that we were able to

find on average four or more correct constraints out of between
four to six impacted constraints in the three considered cases.
For the Family case, as indicated in Fig. 10a, we generate
correct solutions for all the constraints in the majority of the
executions (25 out of 30). For the remaining 5 executions,
only one constraint is missing. For the State Machine case, we
generated correct solutions for all constraints in 17 out of 30
executions. Out of a total five constraints, one constraint was
missing in 12 executions, and two constraints in 1 execution.
In the Project Management case, we generated four correct
solutions out of a total of six constraints in all 30 executions.

Our approach generated correct solutions in at least one
execution for all constraints of the Family and State Machine
cases. However, the Project Management case contains two
constraints for which our approach did not generate solutions
in any execution. This is due to the fact that these two missing
constraints require particularly complex changes. In the future,
we aim to attempt to address such changes by expanding the
mutation operator store of our approach.
RQ2: How efficient are the proposed recommendation tech-
nics? We have plotted the accuracy of the two recommendation
strategies for the three cases in Fig. 11. First, we observe
that both recommendation strategies perform equally well.
We thus conclude that simple ranking is a better recommen-
dation strategy, since clustering is computationally costlier.
Second, we the accuracy of the recommender (for either
strategy) grows with the number of recommendations. We
notice however that, for the three cases, the gain in accuracy
tapers off after 7 recommendations, becoming negligible after
15 recommendations. In other words, we do not observe a
dramatic increase in accuracy by the increase of the size of
the set of recommendations beyond 7.

C. Threats to Validity

We aimed to show that our approach can produce good
results without depending on the many inputs required by other
the state-of-the-art approaches. However, these results have to
be considered in light of the following threats to validity.

The first threat to validity is related to the selection of the
experimental data. We did our best to select cases covering a
wide range of Metamodel–OCL coevolution scenarios. How-
ever, additional, and larger cases are necessary to draw a final
conclusion about the generalizability of our approach.

The second threat to validity is related to the probabilistic
nature of NSGA-II. Indeed, different executions may produce
different solutions. To mitigate this threat, we performed 30
executions to compare our approach with random search and
to assess the correctness of the produced results.

We used syntactic comparison to determine whether a
candidate constraint is the same as the expected one (ground
truth). This is a threat to the validity as two solutions can
differ syntactically, but be semantically equivalent. To mit-
igate this threat, we examined a sample of constraint pairs
(generated/expected) across different degrees of Levenshtein
distance to ensure that they are indeed different. For example,
we encountered a pair in the State Machine metamodel where
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(c) Project Management

Fig. 10: Distribution of the accuracy of solutions: number of constraints found in each execution. X-axis shows the number of
solutions, Y-axis the number of valid constraints for each solution
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Fig. 11: Comparison of the effectiveness of the two recommendation strategies. The X-axis shows the number of recommen-
dations presented to the user. The Y-axis shows the number of correct solutions in the recommendation.

the generated constraint had distance 1 from the expected con-
straint, and yet was ranked as unsatisfactory by our approach.
Upon closer inspection, we found that the only difference was
the use of the identifier events instead of event. This was
a good decision as the two identifiers refer to two different
constructs in the metamodel (see Figure 1).

Finally, we used statistical tests only to answer RQ0, but
not for RQ1 and RQ2. The reason for this is that it is
difficult to compare statistically our approach to the state-
of-the-art, as we are not using the same inputs (metamodel
changes and manually-defined updating rules). Our goal is
not to outperform existing approaches, but rather to obtain
comparable results albeit with less required effort.

VII. RELATED WORK

In this section, we discuss approaches for the problem of
coevolving metamodels and OCL constraints.

Coevolution has been subject for research for several
decades in the database community [24], especially in the field
of object-oriented databases [25]. In model-driven engineering,
evolution is inevitable over the whole life cycle of complex
software-intensive systems. In DSL design, modelling lan-
guages are subject to frequent change [26]. A change in one
artifact involved in the language definition must be reflected
in all other related artifacts such as models, test cases, OCL

constraints, etc. Existing approaches can be classified as on-
line or offline approaches. Online approaches perform instant
coevolution for each change during the metamodel evolution,
whereas offline approaches wait after the metamodel has been
evolved to perform coevolution of the OCL constraints.

For online approaches, Demuth et al. [27] [6] provide
templates that define a fixed structure for OCL constraints
that are then instantiated to update the constraints. However,
they are limited to 11 templates that cannot cover all changes
at metamodel level. Hassam et al. [28] [22] propose a semi-
automatic approach that highlights the constraints that should
disappear after evolution and by formalizing the adaptation
to be applied on impacted constraint after each operation on
a metamodel using the QVT transformation language [29].
Similarly, Markovic et al. [30] [31] proposed an approach
using QVT, in which they formalize the most important
refactoring rules for class diagrams and classify them with
respect to their impact on annotated OCL constraints. The
advantage of online approaches is that the order of changes
is preserved and no hidden changes are missed. However, the
cancelling actions during evolution are apart of the detected
changes.

For offline approaches, Kusel et al. [32] analyze the impact
of metamodel evolution on OCL, then propose resolution
actions in model transformation by means of ATL helpers.

9



Cabot et al. [7] focused on the metamodel changes that
entail deleting elements. In particular, they aimed at removing
the parts of OCL constraints that use the deleted elements.
Khelladi et al. [8] [28] propose a semi-automatic approach that
records in chronological order the changes to the metamodel.
Then, they detect high-level changes and apply resolution
strategies to adapt OCL constraints based on the structure of
the impacted OCL constraint and the impacted location.

With respect to automation, Markovic et al. [30] [31], Cabot
et al. [7], Demuth et al. [27] [6] are fully automated
approaches. Hassam et al. [28] [22], Khelladi et al. [8] and
Kusel et al. [32] are semi-automated approaches. As men-
tioned in the Section II-A, it is difficult to fully automate
the updating of OCL constraints as the evolution intent is
not explicit. Our approach, classified as offline, automates the
generation of solution sets, but leaves the final decision to the
user to select the solutions that better match her intent.

The above-mentioned approaches focus on identifying con-
ceptually high-level changes to the metamodel in order to
coevolve OCL constraints. They detect such changes either
by manually comparing the two metamodel versions or by
recording, matching or calculating their differences. Subse-
quently, they apply various change-specific strategies aimed
at mirroring the high-level conceptual changes. Conversely,
our approach, although it uses atomic changes to determine
which constraints have to be updated, it does not link these
changes to predefined updating strategies.

From another perspective, our approach generates a set of
candidate solutions, and thus still requires user input to select
the most appropriate candidate. In contrast, published ap-
proaches require the user to explicitly encode her preferences
up front and produce a single solution. However, committing
to a set of explicit preferences in advance might not be possible
without an idea about the shape of expected results. In that
sense, our approach allows users to avoid over-committing
to specific coevolution strategies in the absence of enough
information. Instead, the choice of strategy is deferred until
the user has more information and can assess the relative
quality of candidate solutions. This strategy has previously
been successfully applied to managing design uncertainty [33]
and to non-deterministic bidirectional transformations [34].

In addition to OCL coevolution, other research contribu-
tions have addressed the problem of coevolving artifacts after
metamodel changes. The most important body of work targets
metamodel-model coevolution [35]. Different approaches were
proposed such as exploiting the formal relationship between
models and their respective metamodels [36], defining coupled
operations for metamodels and models [37], or using a multi-
objective optimization strategy, similar to the one of this paper
[14]. The coevolution of transformation has also been studied,
either on its own [38] or coupled with models [32].

Finally, it is worth mentioning that search-based approaches
have extensively been used in model-driven engineering [39].
In particular, they were used for metamodel-related artifacts
such as generating OCL constraints [40], [41], model selection
for metamodel testing [42], [43], and transformation learning

[44].

VIII. CONCLUSION

The coevolution of metamodels and OCL constraints is
crucial for automating the creation and maintenance of model-
based domain-specific languages. Existing approaches depend
heavily on either explicit tracking or automated identification
of high-level conceptual changes to metamodels and use
predefined rules to produced new versions of OCL constraints.
In this paper, we propose a two-step process to automatically
coevolve metamodels and OCL constraints. First, we pose
the coevolution as a multi-objective optimization problem and
use a genetic algorithm to evolve a population of candidate
solutions. This produces a (potentially large) set of possible
candidate OCL constraints. Second, we recommend to the
user a smaller set of candidate solutions. This allows users
to get a better grasp of the solution space and identify the
most desirable candidates. We evaluated our approach on three
cases of metamodel and OCL coevolution. We found that
our approach identifies and recommends correct candidate
solutions with high statistical significance for most cases.

In the future, we aim to address the main limitations of
our approach, which we outline below. The first limitation
concerns our choice of the set of mutation operators used by
the genetic algorithm in the first step of our approach. The
creation of the set was driven by the examples of metamodel
evolution available to us at the time, and is therefore not
exhaustive or complete. In the future, we intend to extract
update rules from published literature on OCL coevolution
and implement them as mutation operators in our genetic
framework, in order to cover all possible updates.

Another limitation of our approach is the generation of
recommendations using the syntactic difference between can-
didates, captured by the Levenshtein distance between the
textual representations of OCL constraints. In the future, we
intend to investigate more sophisticated ways of generating
recommendations, that also take into account the semantics of
the OCL language.

Finally, while the three objective functions that we used
performed reasonably, we observed that they do not have
enough discriminatory power. Specifically, we found cases
where two candidates that were ranked as equivalent were in
fact not equally good solutions. In other words, our objec-
tive functions cannot fully discriminate between correct and
partially correct solutions. In the future we aim to develop
objective functions that also take into account the semantics of
OCL constraints. To do this, we intend to leverage metamodel
test cases, i.e., instance models of the initial metamodel for
which the initial OCL constraints have known verification
results (cf. Section II-A). These test cases can be evolved
to the new version of the metamodel [14] and can then be
subsequently used to test candidate solutions.
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