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Abstract. Software modelling activities typically involve a tedious and time-
consuming effort by specially trained personnel. This lack of automation hampers
the adoption of the Model Driven Engineering (MDE) paradigm. Nevertheless, in
the recent years, much research work has been dedicated to learn MDE artifacts
instead of writing them manually. In this context, mono- and multi-objective Ge-
netic Programming (GP) has proven being an efficient and reliable method to
derive automation knowledge by using, as training data, a set of input/out exam-
ples representing the expected behavior of an artifact. Generally, the conformance
to the training example set is the main objective to lead the search for a solution.
Yet, single fitness peak, or local optima deadlock, one of the major drawbacks of
GP, happens when adapted to MDE and hinder the results of the learning. We aim
at showing in this paper that an improvement in populations’ social diversity car-
ried out during the evolutionary computation will lead to more efficient search,
rapid convergence, and more generalizable results. We ascertain improvements
are due to our changes on the search strategy with an empirical evaluation fea-
turing the case of learning well-formedness rules in MDE with a multi-objective
genetic algorithm. The obtained results are striking, and show that semantic di-
versity allows a rapid convergence toward the near-optimal solutions. Moreover,
when the semantic diversity is used as the crowding distance, this convergence is
uniform through a hundred of runs.

1 Introduction

Model Driven Engineering (MDE) aims at raising the level of abstraction of program-
ming languages. MDE advocates the use of models as first-class artifacts. It combines
domain-specific modeling languages to capture specific aspects of the solution, and
transformation engines and generators in order to move back and forth between mod-
els while ensuring their coherence, or to produce from these models low level artifacts
such as source code, documentation, and test suites [1]. Still, designing and develop-
ing artifacts able to perform automated tasks in MDE (ensuring the well-formedness
of models, transforming models, etc.) requires one to have both knowledge in the tar-
geted domain as well as in the design and development tools. If done manually, these
activities typically involve a tedious and time-consuming effort by specially trained per-
sonnel. Such a lack of automation is considered by many MDE specialists as a threat to
MDE adoption [2,3].
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Yet, in recent years, many research contributions have shown that it is feasible to
automatically learn how to perform a task through examples, or by analogy to similar,
previously-solved tasks. More precisely, many of the proposed learning methods are
based on Genetic Programming (GP) algorithms, and thereby promise to ease the bur-
den of hand-programming growing volumes of increasingly complex information. As a
matter of fact, empirical studies have shown a strong potential in learning automatically
model transformations [4,5,6] and model well-formedness rules [7,8] from examples
of tasks input/outputs. An example here must be understood as a couple <input model;
expected output> defining the constraints that bind artifacts’ output to input. The set
of training examples represents the expected behavior of the artifact to learn and thus
constitutes a convenient objective to lead the search of a solution.

Genetic programming and more generally multi-objective evolutionary computation
has received increasing attention in the last decades. From early works [9,10,11,12],
authors have formulated the idea that optimizing for multi-objective is to search for
multiple solutions, each of which satisfy the different objectives to different degrees.
The selection of the final solution with a particular combination of objectives’ values
is thus postponed until a time when it is known what combinations exist [13]. Studies
have shown the value of such technics and their suitability to real problems. However,
from the very beginning, authors pointed out two major drawbacks to the application
of genetic programming (GP): (i) diversity of populations is difficult to maintain during
evolution, and populations tend to gather around a single fitness peak; and, (ii) individ-
uals tend to grow unnecessarily in size — also called bloating effect.

Both bloating and single fitness peak symptoms have been well investigated by re-
searchers since early works, and valuable research directions were proposed [14,15,16].
Nevertheless, while adapting GP as an automatic process to learn well-formedness rules
from examples, we encountered these same scenarios in a great amount of runs. Solu-
tions agree on finding the correct outputs for a large number of examples, but fail all
on a few same examples — a single fitness peak is reached. The approach seems to fa-
vor solutions with a high fitness, i.e., a high percentage of correct output found, at the
expense of the diversity of the solutions.

On promoting diversity, Vanneshi et al. showed in their work the superior impor-
tance of research on indirect semantic methods that "act on the syntax of the individuals
and rely on survival criteria to indirectly promote a semantic behavior” [17]. Inasmuch
as semantics are considered in GP as a vector of examples, MDE learning from ex-
amples methodology offers an auspicious support for such investigations.In the present
study, we introduce a new Social Semantic Diversity Measure of individuals (inspired
from Natural Language Processing) operating indirectly during the execution of a well-
established multi-objective genetic algorithm [18]. We illustrate our work and assess
its value in an empirical study featuring the problem of automatic learning of well-
formedness rules from examples and counter examples.

The following section draws a map of the two main drawbacks of genetic program-
ming and how researchers tackle them. Section 3 details how employing our Social
Semantic Diversity Measure foster efficiency and accuracy of a GP run. We illustrate
our approach in a case study depicted in Section 4. We assess our assumption through
an empirical evaluation in Section 5 Section 6 concludes briefly.
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2 Background, Related Work, and Problem Statement
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Fig. 1: A typical genetic programming cycle

Genetic Programming (GP) execution is best understood using Fig. 1. At the be-
ginning, an initial population of programs must be created (1). Then, every program of
the population is executed the example inputs, and its fitness evaluated by comparing
its outputs to the expected ones (2). If a termination criterion is reach (3), the solution
program (or a set of near-optimal solutions, in case of multi-objective) is returned (6).
Otherwise, a new population of programs is created by genetic operations (crossover
and mutation) applied on selected potential reproducers (4). The new population re-
places the previous one (5), and a new iteration starts (2). The loop is repeated until a
termination criterion is reach (commonly, a perfect fitness, or an arbitrary large number
of iterations). Although this process allows to find good solutions for many problems,
it is known to suffer from two issues, bloating and single fitness peak. In the remainder
of this section, we briefly discuss the bloating issue, and then focus more of the single
fitness peak issue and its relation to diversity, which is the main object of this paper.

2.1 Bloating

Luke et al. suggest that, from a high level perspective, bloating (or code growth) hap-
pens because adding genetic material to individuals is more positively correlated to the
fitness than removing material. They define it as the "uncontrolled growth of the av-
erage size of an individual in the population" [16]. Nonetheless, much work has been
done to reduce the effect of bloating, offering to present readers a few options to choose
from [15]. More precisely, in a multi-objective context, Pareto-based Multi-objective
Parsimony Pressure (i.e., using an objective devoted to constraining size of individuals)
has been found very effective — with limited side effects [13,19]. We use this technique
in our experiments.

2.2 Single fitness peak

The second problem with GP is the risk of a single fitness peak [13], consisting in a
premature convergence together with a loss of diversity. Candidate solutions get stuck
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in a local optima and often no further improvement in fitness is noticed [20]. To tackle
this issue, the level of diversity a population conveys must be given due consideration
during a GP run [21]. More precisely, two phases of such a run are appropriate: at the
initial population creation, to ensure a broad genetic material base; and/or during the
evolution itself, to ensure that diversity does not fall from one generation to another. In
both cases, diversity exists in two kinds: genotypic diversity considers the level of vari-
ability in individuals’ structure, whereas phenotypic diversity focuses on the behavior
of individuals.

Genotypic Diversity Genotypic diversity is the variety of individuals among a popu-
lation with regards to their structure. It’s a measure of the distance between individu-
als’ syntax [22,23]. MDE though, since the syntax of artifacts is (very) complex, does
not bare a single consensual definition of genotypic (or structural) diversity [24,25].
Nonetheless, to bestow a sufficiently diverse genetic material to start an evolutionary
computation with, teams have used different metrics based on coverage estimations and
showed interesting results. Works vary in nature and offer automatic generation of di-
verse models [8,26], or a user visual assistance helping when eliciting learning inputs
data [27,28,29]. In any case, both techniques can be employed to provide with diverse
initial population of solutions as well as with qualified input data.

Phenotypic Diversity As opposed to genotypic diversity, phenotypic diversity is mea-
sured on the behavior of a program — independently to its syntax. A phenotypic (or
semantic [17]) measure, refers to the proportion of examples correctly processed by a
program (i.e., producing the expected output when executed on a specific input). It is a
tangible fact that phenotypic diversity is more efficient than genotypic diversity to avoid
the single fitness peak problem [17]. Nonetheless, if some early studies went as far as to
expand the Darwinian metaphor and considered preference between individuals during
GP run [30], to the best of our knowledge, there exists no study explicitly measuring
benefits of phenotypic diversity when learning MDE artifacts.

Indirect Semantic Diversity Methods Roughly speaking, these methods combine
both genotypic and phenotypic diversities. The rationale behind indirect diversity meth-
ods lies in their ability to distinguish between the aim of the method: individuals with
acute Semantic Fitness, and the mean of its application: genetic modifications per-
formed on their syntax. Understood as such, the heuristic remains agnostic of its mean
of achievement and is ready to convey a strong generalization potential [31]. Vanneshi e?
al. [17] have proven the power of indirect diversity methods and call for more research
in this field. It is to note here that, in the context of learning artifacts from examples in
MDE, Semantic Fitness measure is a built-in feature and comes at no extra cost.

3 Social Semantic Diversity Measure

Nonetheless, MDE-artifacts learning from examples might be perfectly fit to GP adap-
tation, single fitness peaks yet keep happening during evolution. This leads to a dis-
proportionate number of solutions with a good fitness, at the expense of their diversity.
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Processing most examples correctly, these alphas [14] struggle to solve all examples
exhaustively. Meanwhile, unfortunately, solutions able to solve the remaining corner
cases reach a (much) lower fitness. Withal, since reproducers are chosen with regard to
their fitness, the genetic material these latter partial solutions convey is lost and corner
cases are never solved. A remedy to this deficiency was found using a social diversity
measure.

We call Social Diversity Measure a measure that does not take into account the only
individualistic fitness (i.e., how many examples an individual resolves) but considers as
well a social dimension (i.e., what does that individual bring to the general fitness of
the population).

Since we use a Semantic fitness, the remaining of this paper will mention Social
Semantic Diversity Measure (SSDM). Its computation, based on the inverse example
resolution frequency (IERF) is inspired from the term frequency-inverse document fre-
quency (TF-IDF) numerical statistic [32] in the information retrieval domain. In other
words, the SSDM of a solution is the sum of IERF of the examples it solves.

Paraphrasing TFIDF definition may help the reader to grasp the general idea of
SSDM. We formulated as follows: "SSDM increases proportionally to the number of
examples solved and is offset by the frequency of which an example is solved by the
population’s individuals, which helps to adjust for the fact that some examples are more
frequently solved in general."

As a consequence, SSDM favors solutions solving corner cases by considering how
many solutions in the population solve an example.

4 Learning Well-formedness Rule

Metamodel

Example (Valid model)

Counter Example (Invalid model)

Fig. 2: Metamodel, modelling space and application domain

In this section, we illustrate how social semantic diversity can be implement in a
multi-objective genetic-programming algorithm to learn model well-formedness rules



6 Edouard Batot and Houari Sahraoui

(WFRs) from examples. As mentioned in the introduction, researchers offer to use GP
to learn some of MDE artifacts automatically as a substantial alternative to writing
them manually. Indeed, we aim at showing in this paper that, during the process, which
scalability remains at stake [33], an improvement in populations’ social diversity will
lead to more efficient search and more generalizable results. Thus far, the reader is asked
to understand the little space left for implementation details.

After a brief overlook at the use and function of well-formedness rules, we will
depict how much a tangible support GP, and more precisely multi-objective GP, offers
to learn them automatically from examples and counter examples.

4.1 Well-formedness rules

In the MDE paradigm, due to their high level of abstraction, metamodels usually define
too-large modelling spaces. They must be enriched with constraints, or rules, limiting
the scope of their possible instantiations, i.e., well-formed models in contrast to ill-
formed models. Fig. 2 schematizes the concept of specific application domain: a meta-
model defines a modelling space (within blue line) ; of which a specific application
domain is a sub-space (within red dashed line). A set of WFRs allows to automatically
differentiate between valid (well-formed) and invalid (ill-formed) models — it formally
describes the limit of that targeted specific domain.

Representation. In the context of a GP learning process, a solution to our problem is
thus a set of WFRs. More precisely, we represent a WFR as a tree which nodes are
logical operators (AND, OR, IMPLIES, and NOT) and first-order quantifiers (forAll
and exists), and which leaves are learning atomic blocks in the form of OCL patterns
instances. Consequently, a solution is a tree with as root a vector whose elements are
pointers to the individual WFR trees. Fig. 3 shows an example of a candidate (not
necessarily valid) solution with 3 WFRs for the state-machine metamodel. The first and
second rules constrain a final state to have respectively one incoming transition and no
outgoing transition. The third rule requires that a pseudostate choice must have at least
one incoming or outgoing transition. As for their execution, we implement WFRs in the
defacto language Object Constraint Language (OCL").

OCL patterns. The rationale behind OCL patterns is beyond the scope of this paper.
These result from empirical studies carried out on more than 400 metamodels from
industry and academe alike [34]. In a nutshell, OCL patterns should be understood here
as a minimalistic set of templates which instantiation and composition allows to express
all and every useful WFR.

Size concern. Since solutions must be legible by final user (within human reach), the
size of constraints must be kept as small as possible.

4.2 GP Adaptation

Our goal is to find the minimal set (i.e., size) of WFRs that best discriminates between
the valid and invalid example models (i.e., fitness). Size and fitness objectives being

! http://www.omg.org/spec/OCL/
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Fig. 4: Non Sorting Genetic Algorithm NSGA-II [18]

different in nature, we represent the learning of WFRs as a multi-objective optimization
problem, and we solve it using the Non-Sorting Genetic Algorithm NSGA-II [18].

The idea of NSGA-II [18] is to make a population of candidate solutions evolve to-
ward the near-optimal solution in order to solve a multi-objective optimization problem.
NSGA-IIis designed to find a set of optimal solutions, called non-dominated solutions,
also Pareto set. A non-dominated solution is the one which provides a suitable compro-
mise between all objectives without degrading any of them. As described in Fig. 4, the
first step in NSGA-II is to create randomly a population Py of N/2 individuals en-
coded using a specific representation (1). Then, a child population @)y, of the same size,
is generated from the population of parents Fy using genetic operators such as crossover
and mutation (2). Both populations are merged into an initial population R of size N,
which is sorted into dominance fronts according to the dominance principle (3a). A so-
lution s; dominates a solution s, for a set of objectives {O; } if Vi, O;(s1) = O;(s2) and
35 | Oj(s1) > O;(s2). The first (Pareto) front includes the non-dominated solutions;
the second front contains the solutions that are dominated only by the solutions of the
first front, and so on and so forth. The fronts are included in the parent population P;
of the next generation following the dominance order until the size of N/2 is reached.
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If this size coincides with part of a front, the solutions inside this front are sorted, to
complete the population, according to a crowding distance which favors "diversity" in
the solutions (3b). This process will be repeated until a stop criterion is reached, e.g., a
number of iterations or a certain value of the Semantic Fitness.

We adapted NSGA-II to our problem as follows.

— Solution Representation and Creation. A solution to our problem is represented
as mentioned in Section 4.1, i.e., a set of OCL constraints, each representing a
WEFR implemented as tree. The initial population is created randomly. For each
individual, the average number of nodes in the WFR trees, the maximum depth,
and the maximum width are configurable;

— Reproduction. As genetic operators, we use a single-point crossover applied to
the tree-root vector, and two kinds of mutations. First, a node from a WFR tree
is chosen randomly. If it is a leaf, the pattern instance is either replaced with a
new randomly created one or, if applicable, the pattern parameters are replaced
randomly with applicable values. If the selected node is a logical operator, this is
changed randomly.

— Objectives. We consider three objectives: Size is the number of leaves in the con-
straint tree, the smaller the better; Semantic Fitness is the number of examples pro-
cessed accurately by an individual, to be maximized; and Diversity is SSDM, which
can be represented either as an objective or a crowding distance, to be maximized
as well.

— Termination criteria. Evolution stops if either a Semantic Fitness of 99%, or an
arbitrary large number of iterations, is reach.

4.3 Social Semantic Diversity Implementation

We offer to employ the Social Semantic Diversity Measure (SSDM) in two different
ways. The first is as an objective of its own, considered together with above-mentioned
size and fitness (as promoted by Dejong et al. [13]). The other builds on peculiar lim-
itation of NSGA-II [35] and acts as an alternative to the computation of a crowding
distance. In both cases, SSDM computation remains the same. This is explained in
Listing 1.1.

More specifically, implementing SSDM comes to adapting TF-IDF [32] using ex-
amples as documents and solutions as words. At a given iteration, SSDM is calculated
from a binary matrix in which each cell represents the score of an individual against
an example of the training set. The frequency of an example is the number of times
it is solved by individuals. Finally, individual’s SSDM value is the sum of inverse ex-
ample resolution frequencies of examples that it processes accurately. More precisely,
variables are:

— example_set, the vector of training examples;

— sol_vs_examples, which contains the result of the comparison between output of
individuals and output of the oracle when executed on example_set;

— and fq_ex, which contains examples frequencies, recording how many solutions
solve each example from example_set;

— der fi, the vector of inverse example resolution frequencies of training examples.
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Listing 1.1: Excerpt for SSDM weights calculation.

\\ Compute frequencies of examples solved
for (int i = 0; 1 < sol_vs_ex.length; i++)
for (int j = 0; j < sol_vs_ex[i].length; Jj++)
fqg ex[j] += sol_vs_ex[i]l[3]];

\\ Inverse document frequencies
for (int j = 0; j < fg.length; j++)
ierfi[7] Math.loglO(D/fg_ex[]J]);

\\ Weigthing
weight = 0;
for(int j = 0; j < example_set.length; j++)
if (example_set[]j].isAccurate())
weight += ierfif[j];

5 Evaluation

To assess the improvement brought by the social semantic diversity in the search strat-
egy, we conducted an empirical evaluation’. We formulate our research questions as
follows:

— RQO: Are our results a consequence of an efficient exploration of the search space,
or are they due to the vast number of individuals we consider during the evolution?

— RQ1: Does the use of Social Semantic Diversity as an objective improves the search
strategy, and, if so, how much?

— RQ2: Does the use of Social Semantic Diversity as an alternative crowding distance
exhibit better efficiency and generalizabilty than SSDM as an objective?

5.1 Setting

In order to mitigate the influence of a metamodel specific structure on the learning pro-
cess, we selected three metamodels (FamilyTree, Statemachine, and Project
Manager) that demonstrate different levels of structure complexity, and that require
diverse OCL WEFR sets. We provided with oracle (i.e., expected WFRs) manually. In
more details, FamilyTree is the most simple case. Yet, it has been used as an illus-
trative example in various publications in the MDE research literature, such as [36].
Statemachine illustrates structural cardinality restrictions and define a common,
widely used language. Finally, Project Manager is the most complex case and
comes from [37].

2 All data from the experiment is available at
URL anonymized
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Learning examples To provide with example sets of quality (i.e., covering at best the
modelling space, yet as small as can be), we used a model generator [8]. Size matters
since every generated model example must be, in a real setting, tagged manually as valid
or invalid. For the sake of experiment, we use the WFRs oracles to mimic the manual
tagging. To run the experiment, we used two sets of examples for each metamodel.
On the one hand, 20 models (10 valid, 10 invalid) were required for the learning (a
training set). On the other hand, 100 models (50 valid, 50 invalid) were used to measure
solutions’ accuracy (fest bench).

Configurations and variables Four configurations were considered to illustrate and
answer our research questions (see Section 4.2 for implementation details). RND is
a random exploration of the search space that takes the best among a given number
of solutions randomly generated; STD is a standard run of NSGA-II [18] with two
objectives, size and semantic fitness; OBJ is a run of NSGA-II with three objectives:
size, semantic fitness and SSDM diversity; and CD is a run of NSGA-II with size and
semantic fitness as objectives and a SSDM crowding distance.

We used two dependent variables to quantify experiment results: #GEN, the number
of generation the evolutionary computation needed to find a solution. A score of 3000
means that there was no solution with perfect fit found during the search, and ACC, the
proportion of examples from the test bench a solution process accurately.

Evaluation protocol For the NSGA-II parameters, we use a maximum number of itera-
tions of 3000 and a population size of 30 solutions. Crossover and mutation probabilities
are set to 0,9 and 0,3 respectively. In addition, solutions are created with between 5 to 15
WFRs with each WFR having a maximum depth of 3 and width of 15. We answer RQO
with a comparison between the results given when using SSDM as an objective (OBJ)
in the search strategy and those of a random exploration (RND). Since our strategy ex-
plores 3000*30 solutions, the random exploration explores randomly 90000 solutions
as well and considers the best individual so created. We answer RQ1 with a comparison
between the solutions obtained after an execution with (OBJ) and one without (STD)
social semantic diversity objective. Finally, we answer RQ2 by comparing the configu-
rations with social semantic diversity objective (OBJ) and with social semantic diversity
crowding distance (CD). We ran each treatment 100 times to tackle GP indeterminism
and guarantee statistical significance of the findings using the Mann-Whitney test.

5.2 Results and Analysis

RQO - Sanity Check As can be seen in Table 1, the RND configuration gives very poor
results in comparison with an OBJ execution for two most complex metamodels (aver-

age accuracy of 0.5 vs 0.76 for Project Managerand0.53 vs.0.94 forStatemachine).
The difference in both cases is statistically significant (p-value <0,001) and the effect

size is large (Cohen’s d > 5). For the small metamodel FamilyTree, although sta-
tistically significant, the difference and the effect size are small. We can conclude that
solutions are significantly more generalizable when using OBJ configuration.
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Table 1: Statistical comparison of results between random search and our approach on
three WFR learning scenarios.

Average ACC Mann Witney |Effect Size
Value K

RDN| OBJ p-value | Cohen’sd
Project Manager| 0.5 | 0.76 <0.001 7.35
Statemachine|0.53| 0.94 <0.001 5.38
FamilyTree|0.93| 0.98 <0.001 0.74

RQ1 - Social Semantic Diversity Method, an improvement? Efficiency shows a
significant improvement when SSDM is used, as can be seen in odd columns of Fig. 5.
The number of generations required to find a solution when employing OBJ is a lot
smaller than when employing STD. With Project Manager metamodel, an STD
run hardly find solutions solving all training examples within 3000 generations, but
OBJ do it in an average of 260 generations. More, solutions were found with signif-
icantly better accuracy than STD (respectively 0.76 against 0,69) and thus strengthen
solutions’ generalizability likewise. This success is also noticed, if of lesser magnitude,
during executions on the Statemachine metamodel. Here, if solutions are found in
both configuration, yet OBJ is significantly faster (with 782 generations, when STD re-
quires more than 1782). As for the Fami1lyTree metamodel (not shown if the figure),
solutions given by OBJ executions output a similar ACC (0.98) but significantly faster
with 25 generations (resp. 76 with STD ). We can conclude that injecting the social
semantic diversity significantly improves the learning results.
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Fig.5: Number of generations to find solutions and their accuracy on test bench for
Project Manager and Statemachine metamodels.

RQ?2 - Social Semantic Diversity Method as an alternative crowding distance, any
better yet? Results of RQ2 are flagrant (see the third configuration for both metamod-
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Manager metamodel, with a hundred runs a plot.

els in Fig. 5). In Fig. 6, a hundred runs show together how using SSDM (6¢ and 6b)
surges the learning curves and fosters solutions exploration, compared to a standard run
(6a). As for generalizability, it doesn’t seem that choosing between SSDM as an objec-
tive (OBJ) or in the crowding distance (CD) has any significant impact on the accuracy
of solutions found (Mann Witney p-value > 0.01; see even columns in Fig. 5 for an illus-
tration). Thence, the main difference lies in the smaller average number of iterations CD
needs to converge, compared to OBJ runs. Note that that analysis is the strongest with
Project Manager and FamilyTree metamodels. With Statemachine meta-
model’s results are slightly mitigated but remains significant. In that case, WFRs are
more generally focused on structural cardinality than WFRs of the two other metamod-
els. We conceive this might be a factor for slightly different results. We can conclude
that social semantic diversity as a crowding distance is more efficient than as an ob-
Jective.

In conclusion, as shown in Fig. 5 and Fig. 6 and certified with statistical analysis,
the OBJ strategy surpasses significantly a STD exploration of solutions. Convergence
is faster and output more generalizable (i.e., confronting solutions to a test bench gives
better results). A reason for these results might come from the way size is controlled.
As recognized in the literature, we implemented it as a Pareto-based Multi-objective
Parsimony Pressure. We noted, as expected [13], that solutions were skewed toward a
1.0 size, and the Pareto front grew large. Solutions size was indeed the one expected
(i.e., legible by a human), and the search, passed a few generations, relied mainly on
Semantic Fitness. As a presumed consequence, when putting SSDM as an alternative
to crowding distance, results were breathtaking on the three metamodels. Finally, using
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Social Semantic Diversity Measure as an alternative crowding distance outperforms its
use as an additional objective. Convergence is boosted, and generalizability is kept at its
maximum. We hope these results are generalizable and claim the need to explore other
applications, with OBJ and CD alike.

5.3 Thread to Validity

Although our approach produced good results on three metamodels, a threat to validity
resides in the generalization of our approach to other scenarios. Still, metamodels show
different characteristic and origin, and while our sample does not cover all learning
scenarios, we believe that it is representative enough of a wide range of metamodels.

Another threat to the validity of our results relates to the use of a single set of (20)
models to learn each WFR sets. Characterization of example sets is an ongoing investi-
gation, and different sets might show different results. Yet, to mitigate what specificities
the manual design of models can bring and encourage replication of our work, we used
a generator [8]. Also, using the same set in every configuration ensures a difference in
sets do not interfere in the experiment.

Regarding the applicability to other MDE artifacts, we believe that the idea to con-
sider the social dimension of individuals’ characteristics shall apply to the evolutionary
computation of model transformation as well. In this case, inverse example resolution
frequency could be used as well and we prospect, as future work, to replicate this study
on model transformation learning.

Finally, we encourage further replication of our work to determine whether different
multi-objective GP algorithms could benefit as well from our discovery.

6 Conclusion

This paper studies the impact of using a social semantic diversity to improve the search
process for the multi-objective optimization problem of learning model well-formedness
rules from examples and counter examples. The Social Semantic Diversity is mea-
sured (SSDM) in way that does not take into account the only individualistic fitness
(i.e., how many examples an individual resolves) but considers as well a social dimen-
sion i.e., what does that individual bring to the general fitness of the population. We
integrated SSDM in the NSGA-II algorithm as (i) an additional objective, and (ii) as
an alternative to the crowding distance.

We evaluated the two options by learning WFRs for three metamodels. Our results
are compiling evidence that injecting the social semantic diversity in the search process,
especial as an alternative to the crowding distance, improves the convergence and the
quality of the learned artifacts. The proposed measure and its integration in the multi-
objective optimization algorithm are agnostic with respect to the learned artifact and
the input/output examples used to guide the search. This allows to use social semantic
diversity for a wide range of problem that can be solved by a multi-objective genetic
programming algorithm. This claim must, however, be supported by replication stud-
ies. We expect to conduct some of these studies, especially, for model transformation
learning.
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