
Towards the Automated Recovery of Complex Temporal
API-Usage Patterns

Mohamed Aymen Saied
Concordia University

m_saied@encs.concordia.ca

Houari Sahraoui
Université de Montréal

sahraouh@iro.umontreal.ca

Edouard Batot
Université de Montréal

batotedo@iro.umontreal.ca

Michalis Famelis
Université de Montréal

famelis@iro.umontreal.ca

Pierre-Olivier Talbot
Université de Montréal
po.talbot1@gmail.com

ABSTRACT
Despite the many advantages, the use of external libraries through
their APIs remains difficult because of the usage patterns and con-
straints that are hidden or not properly documented. Existing work
provides different techniques to recover API usage patterns from
client programs in order to help developers understand and use those
libraries. However, most of these techniques produce basic patterns
that generally do not involve temporal properties. In this paper, we
discuss the problem of temporal usage patterns recovery and pro-
pose a genetic-programming algorithm to solve it. Our evaluation on
different APIs shows that the proposed algorithm allows to derive
non-trivial temporal usage patterns that are useful and generalizable
to new API clients.

ACM Reference Format:
Mohamed Aymen Saied, Houari Sahraoui, Edouard Batot, Michalis Famelis,
and Pierre-Olivier Talbot. 2018. Towards the Automated Recovery of Com-
plex Temporal API-Usage Patterns. In Proceedings of the Genetic and Evo-
lutionary Computation Conference 2018 (GECCO ’18). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In modern software development, to achieve any meaningful task of
non-trivial complexity, developers need to reuse software from multi-
ple sources in the form of APIs, libraries, and services. Such libraries
usually require that client applications obey assumed constraints and
usage patterns. Such constraints are a barrier to adoption by devel-
opers, as learning them is time consuming and tedious, depending
heavily on the quality of documentation. To make matters worse,
such directives are generally not well-documented [8]. For example,
they may touch many methods/classes, whereas documentation such
as Javadoc tends to be unit based (per class, per method).

Specification mining is one way to address these problems. Mined
specification patterns can be used to complement the documentation
of libraries. This can be done by, for example, providing developers
with typical usage scenarios or by integrating the mined patterns into
IDEs to provide on the fly recommendations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Recently, much research effort has been dedicated to the identi-
fication of sequential API usage patterns (ordered sets of co-used
methods) [11]. Other research contributions targeted unordered API
usage patterns [4, 10]. Given a set of client programs that use a
considered library, existing techniques identify API usage patterns
that are recurrent in the given set of clients. The inferred usage pat-
terns with these techniques tend to be many, redundant and simple,
posing significant barriers to their practical usefulness with tasks in-
tended for experienced developers, such as ensuring that the software
remains correct while features are added or removed.

However, mining temporal aspects of such constraints, i.e., latent
temporal properties is still an open question. Some work has been
done on mining temporal specifications from libraries in the form of
automata [6] or rules [4, 7]. Others have attempted to uncover latent
behaviour in UML models [5]. On the one hand, a mined automaton
expresses a global picture of library specification, but the graph may
be very complex and not practical. On the other hand, mined rules
generally consist of two events, i.e., two method calls, which limits
their ability to express complex temporal properties. This is due
to the fact that mining approaches generally rely on predetermined
templates, such as the property patterns of Dwyer et al. [2]. Thus,
only specific classes of constraints can be identified, instead of all
the possibilities that a person could build, require, or understand.
Further, to the best of our knowledge, the published literature does
not address the mining of APIs in particular.

In this paper, we propose to generalize existing approaches for
learning temporal API constraints without using predetermined tem-
plates. To handle a wider spectrum of constraints, we define a proba-
bilistic approach centered around the use of atomic constraint sub-
expressions as “building blocks” for a search-based exploration of
the space of possible API constraints. To this end, we propose a
genetic-programming technique that gradually builds LTL formulas,
representing candidate usage patterns, by combining API method
calls with logical and temporal operators. The search-space explo-
ration is guided by the conformance of candidate patterns with
execution traces of client programs using the targeted API.

We evaluated our approach on eight APIs having a variable num-
ber of clients. Our evaluation shows that we obtained patterns with
different sizes and complexities. It also evidenced that these patterns
are generalizable clients not seen in the learning phase.

The rest of the paper is organized as follows. Section 2 outlines the
contours of the problem of automated mining of temporal API usage
patterns. Section 3, includes an overview of the related work, and we
discuss our vision on how existing approaches can be extended to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’18, July 15–19, 2018, Kyoto, JapanMohamed Aymen Saied, Houari Sahraoui, Edouard Batot, Michalis Famelis, and Pierre-Olivier Talbot

target a wide spectrum of API usage constraints. The details of our
approach and its evaluations are provided respectively in Section 4
and Section 5. We conclude this paper in Section 6.

2 PROBLEM DISCUSSION
In this section, we outline the contours of the problem of automated
recovery of temporal API usage patterns. In this paper, we focus on
recovering such patterns in the form of Linear Temporal Logic (LTL)
expressions. We symbolize as S the space of all well-formed LTL
expressions. Given an API, we denote asA ⊆ S the set of all LTL ex-
pressions that describe its valid usage patterns, i.e. LTL expressions
involving the API public methods. Ideally, a recovery technique
can search all of A to find useful patterns (for some definition of
“useful”). In practice, however, techniques make assumptions that
limit the size of the space within which they search. We call such
assumptions search space parameters. These parameters include
limitations on the size and complexity of the candidate patterns, and
the predefinition of the pattern templates to consider. Other possi-
ble parameters are thresholds on the frequency and accuracy of the
candidate patterns on the learning data. Indeed, when a candidate
pattern occurs very frequently, it might be the sign of triviality or
tautology. Similarly, one may decide to consider only candidate pat-
terns that are never contradicted in the learning data or tolerate a
certain degree of falsification. Thus in practice, a given technique
T searches within a subspace PT ⊆ A defined by its search space
parameters. We call this the search space of the technique. When
the choice of technique is obvious, we write simply P.

We further define three subregions of P, depending on the “use-
fulness” of the patterns that can be discovered in each one. The
first subregion, symbolized byH , contains all patterns that can be
understood by humans with reasonable cognitive effort. These are,
for example, patterns that follow the guidelines proposed by Dwyer
et al [2]. Patterns in H are generally small with low complexity.
The second subregion, symbolized byM, contains the patterns that,
while not humanly comprehensible, can still be efficiently leveraged
by automated techniques to assist humans in the correct usage of
APIs. This can take various forms, such as embedding into an IDE
an recommender system that suggests the most likely API method
to be used next, or detecting uncommon and suspicious API usages.
Patterns inM are large and/or complex. The final subregion, symbol-
ized by I, contains patterns that are cannot be practically used either
by humans or automated techniques. This patterns are generally too
large and too complex, and are generally extremely frequent in the
learning data. ObviouslyH ∪M ∪ I = P. An overview of all the
different regions of the search space is illustrated in Figure 1.

3 RELATED WORK
In recent years, much research effort has been dedicated to the
mining of API specifications and usage patterns [9]. The inference
can generate unordered API usage patterns that describe which API
elements ought to be used together without considering the order of
usage. However, some approaches, also, take order into account and
provide more detailed knowledge about the correct use of an API in
the form of sequential or temporal usage patterns [9].

A

H

M

I

S

Impractical

Machine
usable

Humanly
understandable

P
T

LTL expressions

API properties

Search space
of technique T

Figure 1: Overview of the search space.

3.1 Unordered Usage Patterns Mining
Existing techniques for mining unordered API usage patterns are
valuable to facilitate API understanding and usage.

Zhong et al. [13] developed the MAPO tool for mining API
usage patterns. MAPO clusters frequent API method call extracted
from code snippets, based on the number of called API methods
and textual similarity of class and method names between different
snippets.

Zhu et al. [14] propose an approach to mining API usage examples
from unit test code. They employed a slicing technique to separate
test scenarios into code examples. Then they cluster the similar usage
examples for recommendation.

Saied et al. [10] propose a clustering-based approach to mining
API usage patterns. Their technique combines a static analysis of the
API code (structural and semantic dependencies of API methods)
with a dynamic analysis of execution traces of client programs (API
methods co-usage).

3.2 Temporal Usage Patterns Mining
As mentioned in Section 2, the space of possible API temporal
patterns is very large and potentially infinite. One needs to use
heuristics to explore this space. In the following, we discuss the
heuristics used and their impact on the patterns that can be found.

A simple heuristic to explore the space of possible patterns is
to search for specific pattern templates. This has been done, for
example, by Yang et al. in the Perracotta approach [12]. In this
work, simple two-events patterns are mined from the execution
traces. These patterns follow the template event1 always followed
by event2. Such simple patterns, once mined, can be combined to
produce larger patterns. A similar combination strategy was also
proposed by Gabel and Su in [3], but with a different formalism
to represent the patterns. As stated by Lo et al., such combination
methods might miss some multi-event patterns or create ones that are
not meaningful [7]. Alternatively, Lo et al. generalize the two-event
template to a multi-event template, and mine patterns in the form
of whenever a series of events occurs, eventually another series

Towards the Automated Recovery of Complex Temporal API-Usage Patterns GECCO ’18, July 15–19, 2018, Kyoto, Japan

of events will occur. Uddin et al. [11] also considered the multi-
event template they detect temporal sequential patterns of API use in
terms of their time of addition into the source code during the client
program development. Due to the volatile nature of the development
process, detected patterns may suffer from some imprecision.

The above-mentioned approaches cannot mine complex patterns
such as When event1 occurs, either event2 occurs just after and
event3 will never occur after, or event2 will not occur just after
and event3 will eventually occur. Lemieux et al. [1] proposed a
model-checking-base tool, Texada, to mine such complex patterns.
However, the pattern templates used for the search have to be spec-
ified beforehand. In other words, it is impossible to find what you
are not explicitly looking for. This precludes exploratory searching,
which can reveal previously unanticipated patterns. A good metaphor
to understand the difference between mining specific pattern tem-
plates vs finding unspecified patterns is one of the difference between
automated analysis and visualization in program comprehension. In
the first, the goal is to get a precise response to a specific question,
whereas, in the second case, the goal is to get an abstraction of the
system, which can be explored even without a specific question in
mind.

3.3 Generalizing the Mining
The goal of our work is to generalize the template-based mining of
temporal API usage patterns to a non template-based mining while
keeping the search for temporal patterns feasible. Rather than using
the template heuristic, we use a meta-heuristic to explore the space
of possible patterns, i.e, genetic programming. In this approach, we
progressively construct sets of patterns of arbitrary form and test
their accuracy using the Texada tool [1].

4 COMPLEX TEMPORAL API USAGE
PATTERNS MINING

Our approach consists in using genetic programming, an evolu-
tionary method, to mine temporal patterns from execution traces.
We introduce the GenLTL algorithm to progressively learn a set of
temporal usage patterns in the form of LTL expressions. GenLTL ex-
plores the space of possible LTL expressions representing combina-
tions of method calls on an API with logical and temporal operators.
The exploration is guided by the potential of each candidate pattern
to capture correctly repetitive complex sequences of library method
calls from client programs. To determine this potential, LTL expres-
sions are assessed using a model checker on the execution traces.
We describe in this section the adaptation of genetic programming
(GP) to learn temporal API usage patterns. To apply GP to a specific
problem, one must specify the encoding of solutions, the operators
that allow movement in the search space so that new solutions are
obtained, and the fitness function to evaluate a solution’s quality.
These three elements are detailed in the next subsections.

4.1 Overview
Figure 2 provides a high-level overview of the approach proposed
in this paper. The first step of our approach is to generate the initial
set of LTL patterns to start the evolutionary process. Then, the first
set of patterns is evaluated on the available execution traces. For
every pattern, we measure its frequency and a form of accuracy

called confidence. These two measures allow us to rank the patterns.
Following that, pairs of patterns in the current iteration are mixed
and mutated using genetic operators to drive new patterns, which
are added to the next iteration. This process is repeated until the
algorithm performs a certain number of iterations as an end criteria.
In the remainder of this section, we give the details of our algorithm.

Figure 2: TApproach overview

4.2 Genetic Programming
Genetic programming is a powerful search method inspired by nat-
ural selection. The basic idea is to make a population of candidate
“programs” evolve toward the solution of a specific problem. A pro-
gram (an individual of the population) is usually represented in the
form of a tree, where the internal nodes are functions (operators)
and the leaf nodes are terminal symbols. Both the function set and
the terminal set must contain symbols that are appropriate for the
target problem.

Each individual of the population is evaluated by a fitness func-
tion that determines its ability to solve the target problem. Then, it
is subjected to the action of genetic operators such as reproduction
and crossover. The reproduction operator selects individuals in the
current population in proportion to their fitness values, so that the
more fit an individual is, the higher the probability that it will take
part in the next generation of individuals. The crossover operator re-
places a randomly selected subtree of an individual with a randomly
chosen subtree from another individual.

Once reproduction and crossover have been applied according to
given probabilities, the newly created generation of individuals is
evaluated by the fitness function. This process is repeated iteratively,
usually for a fixed number of generations. The result of genetic pro-
gramming (the best solution found) is the fittest individual produced
along all generations.

The following subsections describe our adaption of GP to the API
temporal patterns mining problem.

4.3 Modelling LTL Patterns
LTL patterns are represented as an unbalanced binary tree. Every
node of the tree represents an element of the pattern. The tree nodes
can be one of two types: Operator nodes or Variable nodes, with
leaf nodes representing variables and non-leaf nodes representing
operators. The tree is built so that the subtree(s) of a given node
represents that operator’s operand(s).

GECCO ’18, July 15–19, 2018, Kyoto, JapanMohamed Aymen Saied, Houari Sahraoui, Edouard Batot, Michalis Famelis, and Pierre-Olivier Talbot

Table 1: Blocks used in the pattern generation algorithm

LTL Pattern Logical Meaning
G(x → Xy) Event x always directly followed by event y
G(x → X !y) Event x never directly followed by event y
G(x → XFy) Event x always eventually followed by event y
G(x → XG(!y)) Event x never eventually followed by event y

• Operator nodes must contain one operator accepted in LTL
syntax and have at least one child node. The internal repre-
sentation of the node’s operator contains its name, symbol
and type (Unary or Binary).

• Variable nodes must contain a variable (a single character
that is not reserved by the LTL syntax) and no child nodes.
Variable nodes are bound to the library methods called in the
traces.

The tree is built such that an in-order traversal of the tree gives
the syntactically correct representation. For that purpose, children
of unary operator nodes are considered right-children with no left-
sibling.

Figure4 shows an example of such a tree. The LTL pattern repre-
sented by this tree is :

G(m1→ XFm2) ∧G(¬m2 ∪m1)

This pattern means a call to the API method m1() is always followed
by a call to the API method m2() with the restriction that method
m2() cannot be called before the method m1()

�

!"

�

m1()

m2()

→

#

m2()

m1()

$

Figure 3: LTL binary tree

4.4 Initial Pattern Set Generation
The initial population is composed of N temporal patterns. This
initial set of LTL patterns is generated following a top-down recur-
sive algorithm to build patterns’ trees. An important aspect of the
pattern generation algorithm is the use of "basic blocks", which are
small, two-variable LTL expressions that are inserted at the bottom
of generated pattern trees. These blocks represent linear correlations
of events that have a meaning in the context of stack traces. They
are included in the generated trees as to ensure that the initial LTL is
at least somewhat sensible in the context of execution traces. Blocks
are randomly selected from a small set (See Table 1). It is important

to note that all blocks only contain free variables when inserted.
Once the tree is built, all variables of the formula are randomly
bound to the method calls in the traces. We ensure, however, that
two instances of the same variable must share the same binding. We
additionally check two integrity conditions: block intersection and
block triviality.

• The block intersection condition specifies that each block of
a single pattern must share, at least, one variable with one of
the other blocks of the pattern. For example, the following
pattern (a → Xb) ∨ (b → XF (c)) ∧ (d → XG(¬a)) respects
the condition, whereas that one does not respects the condition
since the third block is completely independent from the rest
of the pattern (a → Xb) ∨ (b → XF (c)) ∧ (d → XG(¬e))

• The block triviality condition specifies that no block of the
pattern may have twice the same variable. As such, blocks like
(a → XFa) are rejected since they are usually either trivially
true or trivially false.

4.5 Fitness function
To evaluate the fitness of LTL patterns, we have to evaluate the
"performance" of each pattern on the execution trace. To do so,
GenLTL uses the texada tool [1]. This tool (with specific parameters)
takes an LTL and a trace as parameters and returns all possible
bindings of said LTL given the trace. These bindings are evaluated
through three metrics: Support, Potential Support, and Confidence.
We use these three metrics to assign a fitness score to every generated
LTL pattern.
Support Potential: For a pattern p, support potential is the number

of events in the trace that could falsify p.
Support: For a pattern p, support is the number of events that could

falsify p, but do not falsify p.
Confidence: For a pattern p, confidence is the ratio of support over

support potential.
In other words, support potential represent the degree to which a

particular pattern could apply to a trace, support the degree to which
it actually does. The confidence metric exposes the relationship
between the two.

The fitness function defined in defined below should reflect the
following constraints:

• Penalize patterns that under support. Patterns with low sup-
port should be penalized compared to other patterns. since
low support patterns, while they can have high confidence,
are usually more specific patterns that are not easily general-
izable. As such, they are less interesting than patterns with
high support.

• Penalize patterns that over support. Patterns with extremely
high support are so general, that they are usually either trivial
or not worthy of interest.

For these reasons, The fitness function should separate the patterns
in three "layers". The bottom layer for patterns that over-support,
the middle layer for patterns that under-support and the top layer
for those with a good-support. These layers are created by a static
fitness boost given to each category. The boosts for the over-support
and under-support category is 0, and for good-support category is
1/2.

Towards the Automated Recovery of Complex Temporal API-Usage Patterns GECCO ’18, July 15–19, 2018, Kyoto, Japan

We therefore define the fitness function of GenLTL as:

f itness =
1
2
FitnessBoost +

1
2
Conf idence ×

SupportPotential

TraceLenдth

The under-support limit is fixed at 3 whereas the over-support
limit is the length of the trace. Once every pattern is generated and
scored, they are ranked in descending order of score.

4.6 Genetic Operators
To create the next generation, the algorithm relies on genetic opera-
tors to generate new patterns from existing ones In order to maximize
the variability in the new generated patterns, the mutations are not
applied uniformly at each generation. To generate a new pattern, two
starting patterns are picked at random using one of two methods:
Fitness Proportionate or Tournament.

New patterns are created by probabilistically applying genetic
operators in two steps. The first step concerns the crossover with both
seed patterns crossed over with probability c. The resulting patterns
(no matter if crossed over or not) are then randomly transformed by
one of the mutations with probabilitym.

Modified patterns must respect all rules of proprety-checking.
In order to conserve integrety across mutations, the modifications
applied on existing patterns cannot alter the structure of the basic
blocks within it. Blocks can be swapped and their bindings changed,
but the structure must stay the same. To implement this restriction,
all trees have a "breakpoint" node separating the blocks from the rest
of the tree. With the exception of binding mutations, no operation
may modify nodes under the breakpoint.

Crossover The crossover operator take two patterns as input and
produce two new patterns as output. The principle of this crossover
is to select a subtree in each of the two patterns and switch them
from one pattern to the other. Subtree of node α in tree A becomes
subtree of node β in tree B and subtree of node β in tree B becomes
subtree of node α in tree A. It is important to note that if a root
node is picked as a switch node, the whole tree will be switched.
When two subtrees are chosen to be swapped, the algorithm verifies
that the cutting point is not located inside a basic block (or under a
breakpoint as it may). Only when two valid cutting points are found
are the subtrees swapped. Once the swapping is complete, both
trees’ integrity are checked. If either tree break block triviality or
block intersection, the bindings are reworked (see binding Mutation
below).

Operator Mutation The operator mutation simply picks a ran-
dom operator from the tree and replaces it by another operator of
the same type. Unary operators are replaced by unary operators and
binary operators by binary operaotrs. However, in order to preserve
block integrity, this mutation cannot modify operators inside basic
blocks (effectively under the breakpoint).

Encapsulation Mutation The encapsulation mutation simply
takes an LTL tree and adds a unary operator at the top, that op-
erator becomming the new root of the tree. This effectively takes
an LTL pattern and surrounds it by a unary operator. For example,
the pattern x → Xy could be mutated into G(x ← Xy) should the G
operator be applied to it. The encapsulated subtree may not be inside
a basic block (A basic block can, however, be encapsulated with the
new operator over the breakpoint).

Binding Mutation The binding mutation simply changes the
binding event of a variable for another event. Once the binding is
changed, both block triviality and block intersection are checked. If
block triviality is broken, another binding is chosen. If block inter-
section is broken, a connection is renewed using the new bindings.

Figure 4: Genetic Operators

5 EVALUATION
To evaluate the efficiency and relevance of our approach, we defined
three research questions:

• RQ1: What kind of patterns we can interfere with our ap-
proach?

• RQ2: Are the inferred patterns generalizable to other “new”
client programs that are non-seen in the mining process?

• RQ3: Are the inferred patterns meaningful for developers?
We evaluate our technique through the usage of 8 widely used

APIs from the Android platform: database, graphics, hardware, text,
util, view, webkit, widget.

To perform our study, we selected 45 mobile apps using these
APIs. The APIs usage was inferred from the execution trace of
typical usage scenarios for each app. We considered the methods in
the execution traces at the first nesting level on the library side, to
only keep the call to API methods from client methods.

For each experiment in this section, we present the research ques-
tion to answer, the research method to address it, followed by the
obtained results.

RQ1: What kind of patterns we can interfere with our approach?
To address (RQ1) we run GenLTL on the whole dataset of traces

over a horizon of 50 generations with a population size of 300. To
evaluate the structure of the inferred patterns and how complex they
are, we compute the following metrics presented in Table 5. Number
of Events is he number of method calls found in the trace data for the
given API. Then we show the number of traces collected from client
apps for each API. The coverage present on average the percentage
of methods in the trace covered by the patterns methods. Number of
patterns is the number of distinct LTL expressions mined in the trace
of a given API. Methods per pattern is the average number of distinct
methods per pattern. Pattern Depth is in average, the highest number
of nodes from the root of the LTL tree to the beginning of a basic
block. Pattern width is the average number of leaves in the patterns’
tree. The width says on average how many methods are used in the
patterns since potentially the same method may be used more than
one time. Finally Average support as defined in the previous Section.

GECCO ’18, July 15–19, 2018, Kyoto, JapanMohamed Aymen Saied, Houari Sahraoui, Edouard Batot, Michalis Famelis, and Pierre-Olivier Talbot

Table 2: Example of possible mutations with integrity checking

Mutations Original pattern New pattern
Operator G(x → Xy) ∨G(x → Xz) G(x → Xy) ∧G(x → Xz)

Encapsulation G(x → Xy) ∨G(x → Xz) G(G(x → Xy) ∨G(x → Xz))

Binding (”eventA”→ X ”eventB”) ∧ (”eventA”→ X ”eventC”) (”eventD”→ X ”eventB”) ∧ (”eventD”→ X ”eventC”)
Crossover G(x → Xy) ∨G(x → Xz),G(a → XF (z)) ∨G(z → Xw) G(a → XF (z)) ∨G(x → Xz),G(x → Xy) ∨G(y → Xw)

Table 3: Descriptive statistics of our setting and results

Traces Patterns
API Nb events Nb Traces coverage Nb patterns Nb methodPerPattern depthPattern widthPattern support

database 4057,00 10,00 0,44 124,00 6,07 2,40 7,00 567,47
graphics 1210,00 21,00 0,08 115,00 5,26 2,23 6,34 278,05

hardware 559,00 3,00 0,47 80,00 3,33 2,42 6,76 158,13
text 483,00 12,00 0,21 89,00 3,87 2,37 6,99 101,28
util 878,00 27,00 0,08 115,00 5,36 2,34 6,74 168,64

view 1255,00 45,00 0,12 115,00 5,15 2,24 6,59 335,73
webkit 320,00 15,00 0,33 110,00 4,78 2,51 7,09 28,47
widget 444,00 5,00 0,31 94,00 3,99 2,23 6,45 86,40

A cursory look at the results of table 5 reveals some interesting
details that merit an in-depth analysis. First, it is worth to mention
that we show the characteristics of solutions found (i.e. patterns
with fitness 1.0 at last iteration). The inferred patterns for all studied
API have a high average confidence that reach 100%. These high
confidences seem to lend credence to the idea that most patterns
found with GenLTL will be reliable since, in most cases, they will
be respected in the API proper. If, by oposition, the confidence were
to be found low, this would cast doubts on the usability of found
patterns since, even if interesting, the found patterns wouldn’t be
respected most of the time.

A second noteworthy detail is the consistently high amount of
support for each API. This support reinforces the usability of patterns
found through the GenLTL algorithm since it implies that the found
pattern is usually used throughout the API and not at one single
point in the API. Patterns with such support would then be trivial
to generalize; something that is not easily done with low support
patterns. For example, a pattern with a confidence of 100% but
support of 1 would be of little interest since, even if it has a high
confidence, the low support would indicate that the pattern is used
sparingly through a typical use of the API and therefore, hard to
generalize.

A third interesting detail found in the results is the fact that the
graphics and util APIs have low coverage (8%) compared to other
APIs. The presence of such low coverage amidst the results seems to
indicate that GenLTL can not only find “general” patterns (patterns
concern a big portion of the API) but also “local" patterns (patterns
that concern specific set of methods in API). A last detail of note
is the fact that patterns found in the database API are, on average,
more complex that those found in other APIs. Indeed, the number of
methods per pattern, the depth and width of patterns are all higher
in this API as compared to others. This fact seems to indicate that a
bigger number of methods are interdependant in this API and that
their usage more closely correlate to one another. This can probably

be explained by the fact that the database API have more methods
that need to be called together for the whole API to function.

RQ2: Are the inferred patterns generalizable to other “new” client
programs that are non-seen in the mining process?

The mining of usage patterns for an API depends on the used
set of API’s client programs (training client programs). Hence, to
address our second research question RQ2, we need to evaluate
whether the detected API’s usage patterns will remain with similar
confidence degree in the context of new client programs of the
API (validation client programs). Our hypothesis is that: detected
usage patterns for an API are said “generalizable" if they remain
characterized by a high confidence degree in the contexts of various
API client programs. This is regardless of the natures and features
of those client programs, and of whether those programs were used
or not for detecting the API’s usage patterns.

To evaluate the generalizability of detected patterns, we perform
leave-one-out cross-validations for all the selected APIs while con-
sidering the client programs using each API in the considered set of
45 mobile apps selected for our study. Let N represents the number
of used client programs for the considered API (e.g., N = 37 for the
view API), we perform N runs of GenLTL on the API. Each run
uses N-1 client programs as training client programs for detecting
usage patterns and leaves away one of the APIs client programs as
validation client programs. The results are sorted in N runs, where
each run has its associated usage patterns and its corresponding
training and validation client programs.

Then, we address our second question (RQ2) in two steps, as
follows. In the first step, for each run of the cross-validation, we
selected the inferred patterns that have a confidence degree upper
than a certain threshold (in our experiment the threshold was 80%).
In the second step, for each selected pattern we use the Texada tool
to check if the pattern actually holds in the trace of the validation
client and with wich confidence degree. the goal is to see if good
patterns remain good in the context of new client programs.

Towards the Automated Recovery of Complex Temporal API-Usage Patterns GECCO ’18, July 15–19, 2018, Kyoto, Japan

In Figure 5 we plot for each API the confidence degree of the
selected pattern in both the training or learning process API_L and
the validation or testing process API_T.

The boxplots show that a very few degradation in the confidence
degree can be observed between training and validation context.
Actually, except for database, webKit and widget, the confidence
degree was almost equal to 100 % for all the other APIs in both
contexts which reflect a very high generalizability for the mined
patterns. The worst degradation in the confidence degree was noticed
for the widget API, this could be explained by the fact that the widget
package contains mostly UI elements to use to create an application
widget, and most of the apps can have different widgets and we can
even have the same app proposing different widgets to its end user,
with means the use of this API may vary from an application to
another. However, despite we had the wors degradation for was the
widget API, the confidence degree remain over 90 % in both training
and validation context.

These results show that the mined patterns with our technique
can be used to enhance the API documentation with high confi-
dence without a need to consider all possible usage contexts (client
programs) of the API of interest.

RQ3: Are the inferred patterns meaningful for developers?
To evaluate the meaningfulness of the mined patterns from a

human perspective, two authors analyzed qualitatively the inferred
patterns generated for a database API (android.database.sqlite).
We focused on a single API so that evaluators could familiarize
themselves to a reasonable degree with rich, in-depth information
taken from its documentation. At the start, the evaluators did a
calibration session, where they analyzed 7 patterns together and
established the following procedure:

a) Summarize the structure of the pattern and identify its com-
ponents.

b) Search in the API documentation for a 1-line description of
each method involved in the pattern.

c) Write a description of each component in natural language.
d) If the descriptions of each component are meaningful, write

an overall natural language description (a “story”) for the
entire pattern.

e) Indicate whether the story is “sensible” or “not sensible”.
Using this procedure, each evaluator then analyzed independently a
sample of 22 additional patterns with support value between 5 and
823. The first evaluator classified 12 out of 22 patterns as sensible;
the second evaluator 15 out of 22. There were 3 instances where
the two evaluators expressed conflicting opinions, and the Cohen’s
Kappa coefficient was calculated as 0.53, indicating moderate inter-
evaluator agreement. These observations are preliminary evidence
that GenLTL can produce meaningful patterns. To further illustrate
this, we describe some characteristic cases.

First consider the pattern P1:

G(c → XG(¬b)) ⊕ G(c → X¬a)

The variables in P1 are the methods of classes in the API, listed in
Table 4. P1 is an exclusive disjunction (XOR) decomposition of two
base block subformulas. The first subformula describes the constraint
that an update operation should never be followed by a state where
the database is being opened. The second subformula describes the

Table 4: Variables used in qualitatively analyzed mined patterns.

Variable Methods in P1
a SQLiteClosable.close()
b SQLiteOpenHelper.onOpen()
c SQLiteDatabase.update()

Variable Methods in P2
p86 SQLiteQueryBuilder.query3()
p48 SQLiteDatabase.compileStatement()
p67 SQLiteOpenHelper.SQLiteOpenHelper()
p85 SQLiteQueryBuilder.query1()
p48 SQLiteDatabase.compileStatement()

Parameter types omitted for brevity. The overloaded methods query3 and query1 are
indexed by the order by which they appear in the API documentation.

constraint that an update operation should never be immediately
followed by a close operation. Since the XOR composition of those
two blocks implies that only one of the two block must be true at
any time time, the resulting pattern “story” can be expressed as
follows: After calling update, if we call close, then onOpen
will never be called. This is a sensible scenario as one would not call
a onOpen method after closing a database. In the opposite case, if
close is not called right away, it makes sense that onOpen would
eventually be called.

We also consider the more complex pattern P2:

(G((p86→ Xp48) → XXp67) → ((p85→ ¬XFp85)UXp48))

The variables in P2 are the methods of classes in the API, listed in
Table 4. P2 consists of two component subformulas, connected by
an implication operator. The first subformula describes a sequence
of operations: the execution of a query, followed by the compilation
of a statement, followed by the creation of an helper object, used
for the opening of new database instances. The second subformula
defines a constraint: the execution of a query cannot be repeated
until a new statement is compiled. The implication between the two
subformulas thus expresses the following “story”: If the method
used for extracting data from the database involves compiling a new
statement and opening a new database object after every query, then
compiled queries cannot be reused.

These two examples illustrate vividly the kinds of rich behavioural
patterns that can be created with GenLTL.

Threats to Validity. Even though we performed experiments on 8
different APIs, the choice of APIs may pose threats to the generaliz-
ability of our conclusions, as they all belong to the Android platform.
In future work, we plan to evaluate our approach on APIs and client
systems belonging to different domains, having different sizes and
coming from different organizations.

An additional threat to validity is posed by the assumptions under-
lying our choices of tools and mechanisms used in our experiments
and technique. We completely rely on the Texada tool [1] to com-
pute important metrics such us the pattern support and confidence.
This could impact the extent to which our actual observations corre-
sponded to the phenomena that we intended to observe, this posing
a threat to construct validity. To mitigate this threat, three of the
authors tested the tool separately on different basic and complex
examples to check that it actually performs what is mentioned in its
documentation.

GECCO ’18, July 15–19, 2018, Kyoto, JapanMohamed Aymen Saied, Houari Sahraoui, Edouard Batot, Michalis Famelis, and Pierre-Olivier Talbot

Figure 5: Patterns Generalizability

6 DISCUSSION AND CONCLUSION
We have proposed a genetic-programming approach to recover API
temporal constraints from execution traces of client programs us-
ing The API. Our approach explores the space of LTL expressions,
representing the candidate patterns, that can be defined on the API
public methods. The exploration is guided by applicability of can-
didate patterns to the trace samples. Unlike most of the existing
approaches, our does not search for specific pattern templates. We
evaluated our approach on eight libraries. Our results show that we
are able to recover a wide range of usage patterns in terms of size,
complexity, and variety of temporal and logical operators. It also
demonstrated that the recovered patterns are generalizable to clients
not considered in the recovery process. Additionally, we assessed the
meaningfulness of the recovered patterns. The majority of patterns
in the analyzed sample were considered as meaningful with respect
to the API functionalities. We believe our work is an important
stepping stone towards the assistance of developers in safely using
the multiple APIs necessary to their development tasks. Indeed, the
recovered patterns, when they are humanly understandable, can be
used to document the API. When these patterns are too complex,
they can still be useful to automatically recommend usage scenarios
or detect uncommon usage situations.

Although the obtained results are very encouraging, there is room
for improvement. First, the approach can be improved to avoid pro-
ducing candidate patterns that are too trivial, especially when the
negation operator is used. Another possible improvement concerns
the fitness functions. Currently, we use a single function that com-
bines the support and the confidence with threshold values. Defining
accurate values for these thresholds is not obvious. An alternative op-
tion to explore is to use a multi-objective search. From the evaluation
perspective, it is necessary to have a larger study on the readability
and the usefulness of the recovered patterns. Such a study should
involve actual developers using a set of APIs.

REFERENCES
[1] Caroline Lemieux Dennis Park Ivan Beschastnikh. General LTL Specification

Mining. (????).
[2] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in

Property Specifications for Finite-state Verification. In Proceedings of the 21st
International Conference on Software Engineering (ICSE ’99). ACM, New York,
NY, USA, 411–420. DOI:http://dx.doi.org/10.1145/302405.302672

[3] Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT ’08/FSE-16).
339–349.

[4] Mark Gabel and Zhendong Su. 2010. Online inference and enforcement of tempo-
ral properties. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 15–24.

[5] Heather J. Goldsby and Betty H. C. Cheng. 2010. Automatically Discover-
ing Properties That Specify the Latent Behavior of UML Models. Springer
Berlin Heidelberg, Berlin, Heidelberg, 316–330. DOI:http://dx.doi.org/10.1007/
978-3-642-16145-2_22

[6] David Lo and Siau-Cheng Khoo. SMArTIC: towards building an accurate, robust
and scalable specification miner. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering.

[7] David Lo, Siau-Cheng Khoo, and Chao Liu. 2008. Mining temporal rules for
software maintenance. Journal of Software Maintenance and Evolution: Research
and Practice 20, 4 (2008), 227–247.

[8] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26, 6 (2009), 27–34.

[9] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2013. Automated API property inference techniques. IEEE Transac-
tions on Software Engineering 39, 5 (2013), 613–637.

[10] Mohamed Aymen Saied and Houari Sahraoui. 2016. A cooperative approach for
combining client-based and library-based API usage pattern mining. In Program
Comprehension (ICPC), 2016 IEEE 24th International Conference on. IEEE,
1–10.

[11] Gias Uddin, Barthélémy Dagenais, and Martin P. Robillard. Temporal Analysis of
API Usage Concepts. In International Conf. on Software Engineering.

[12] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
2006. Perracotta: mining temporal API rules from imperfect traces. In Proceedings
of the 28th international conference on Software engineering. ACM, 282–291.

[13] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining
and Recommending API Usage Patterns. In European Conference on Object-
Oriented Programming. 318–343.

[14] Zixiao Zhu, Yanzhen Zou, Bing Xie, Yong Jin, Zeqi Lin, and Lu Zhang. 2014. Min-
ing api usage examples from test code. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 301–310.

http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1007/978-3-642-16145-2_22
http://dx.doi.org/10.1007/978-3-642-16145-2_22

	Abstract
	1 Introduction
	2 Problem Discussion
	3 RELATED WORK
	3.1 Unordered Usage Patterns Mining
	3.2 Temporal Usage Patterns Mining
	3.3 Generalizing the Mining

	4 Complex temporal API usage patterns mining
	4.1 Overview
	4.2 Genetic Programming
	4.3 Modelling LTL Patterns
	4.4 Initial Pattern Set Generation
	4.5 Fitness function
	4.6 Genetic Operators

	5 Evaluation
	6 Discussion and conclusion
	References

