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Abstract

Context: Despite the many advantages, the use of external libraries through their APIs remains difficult because
of the usage patterns and constraints that are hidden or not properly documented. Existing work provides different
techniques to recover API usage patterns from client programs in order to help developers use those libraries. However,
most of these techniques produce patterns that generally do not involve temporal properties.
Objective: In this paper, we discuss the problem of temporal usage patterns recovery and propose an algorithm to solve
it. We also discuss how the obtained patterns can be used at different stages of client development.
Method: We address the recovery of temporal API usage patterns as an optimization problem and solve it using a
genetic-programming algorithm.
Results: Our evaluation on different APIs shows that the proposed algorithm allows to derive non-trivial temporal
usage that are useful and generalizable to new API clients. Conclusion: Recovering API usage temporal patterns helps
client developers to use APIs in an appropriate way. In addition to potentially improve productivity, such patterns also
helps preventing errors that result from an incorrect use of the APIs.

1. Introduction

In modern software development, achieving any mean-
ingful task of non-trivial complexity means that develop-
ers must reuse software from multiple sources in the form
of APIs, libraries, and services. Such libraries usually re-
quire that client applications obey assumed constraints
and usage patterns. Such constraints can be a barrier to
adoption by developers, as learning them is time con-
suming and tedious, depending heavily on the quality of
documentation. To make matters worse, such directives
are generally not well-documented [23, 31]. For example,
they may touch many methods/classes, whereas docu-
mentation such as Javadoc tends to be unit based (per
class, per method).

Specification mining is one way to address these prob-
lems. Mined specification patterns can be used to com-
plement the documentation of libraries. This can be done
by, for example, providing developers with typical usage
scenarios or by integrating the mined patterns into IDEs
to provide on the fly recommendations.

Recently, much research effort has been dedicated to
the identification of sequential API usage patterns (or-
dered sets of co-used methods) [35] based on develop-
ment activities [2] and execution traces [11, 22, 30]. Other
research contributions targeted unordered API usage pat-
terns [9, 26, 27, 28, 29]. Given a set of client programs that
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use a library of interest, existing techniques identify API
usage patterns that are recurrent in them. However, lever-
aging mined patterns to help developers ensure that the
software remains correct while features are added or re-
moved remains a challenge as the usage patterns inferred
with such techniques tend to be simple, numerous, and
with high degrees of redundancy.

However, mining temporal aspects of such constraints
(i.e., latent temporal properties of APIs) is still an open
question. Some work has been done on mining temporal
specifications from libraries in the form of automata [17]
or rules [9, 18]. Others have attempted to uncover latent
behaviour in UML models [10]. On the one hand, a mined
automaton expresses a global picture of library specifica-
tion, but the graph may be very complex and not practical.
On the other hand, mined rules generally consist of two
events, i.e., two method calls, which limits their ability to
express complex temporal properties. This is due to the
fact that mining approaches generally rely on predeter-
mined templates, such as the property patterns of Dwyer
et al. [6]. Thus, only specific classes of constraints can
be identified, instead of all the possibilities that a person
could build, require, or understand. Further, to the best of
our knowledge, the published literature does not address
the mining of APIs in particular.

In this paper, we propose to generalize existing ap-
proaches for learning temporal API constraints with-
out using predetermined templates. To handle a wider
spectrum of constraints, we define a probabilistic ap-
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proach centered around the use of atomic constraint sub-
expressions as “building blocks” for a search-based ex-
ploration of the space of possible API constraints. To this
end, we propose a genetic-programming technique that
gradually builds Linear Temporal Logic (LTL) formulas,
representing candidate usage patterns, by combining API
method calls with logical and temporal operators. The
search-space exploration is guided by the conformance
of candidate patterns with execution traces of client pro-
grams using the targeted API.

We evaluated our approach on eight APIs having a vari-
able number of clients. Our evaluation shows that we
obtained patterns with different sizes and complexities. It
also evidenced that these patterns are generalizable clients
not seen in the learning phase.

This paper extends our previous work [30] that was
published in the Genetic and Evolutionary Computation
Conference (GECCO) as follows:

a) We provide extensive details about the experimental
setup of the pattern mining validation.

b) We re-implemented a baseline approach and com-
pared with our approach through shedding light on
the kind of patterns that could be inferred.

c) We introduce Tapir (Temporal API Recommender), a
tool that allows putting the mined temporal inves-
tigate to use within developers’ IDEs. Specifically,
we envision using Tapir in four contexts: First, before
the developer starts writing the API client application
code, we envision using Tapir to help augment exist-
ing API documentation by translating patterns into
structured natural language. Second, Tapir can help
when developers write the client-application code.
This is done by flagging potential misuses or by re-
fining the code completion suggestions for API calls.
Additionally, Tapir can be used at testing time to re-
spectively assess whether the code and the execution
traces satisfy the mined patterns. A planned exten-
sion to Tapir, will allow us to adapt this for use at
compilation time, too.

d) We present real-word running examples to illustrate
the different ways to leverage the mined API tempo-
ral patterns.

e) We propose a method, implemented in Tapir, to help
client application developers to correctly use an API
at different development phases using the LTL pat-
terns. Specifically, we propose a method based on
the generation and analysis of “pseudo-traces” from
complete and partial source code, using static analy-
sis.

The rest of the paper is organized as follows. Section 2
outlines the contours of the problem of automated mining
of temporal API usage patterns. Section 3 includes an
overview of the related work, and we discuss our vision
on how existing approaches can be extended to target a
wide spectrum of API usage constraints. The details of our
approach and its evaluations are provided respectively
in Section 4 and Section 5. In Section 6, we present a
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Figure 1: Overview of the search space.

research agenda for leveraging mined API usage patterns
in practice. We conclude this paper in Section 7.

2. Problem Discussion

In this section, we outline the contours of the problem
of automated recovery of temporal API usage patterns.
In this paper, we focus on recovering such patterns in
the form of Linear Temporal Logic (LTL) expressions. We
symbolize as S the space of all well-formed LTL expres-
sions. Given an API, we denote asA⊆S the set of all LTL
expressions that describe its valid usage patterns, i.e. LTL
expressions involving the API public methods. Ideally, a
recovery technique can search all ofA to find useful pat-
terns (for some definition of “useful”). In practice, how-
ever, techniques make assumptions that limit the size of
the space within which they search. We call such assump-
tions search space parameters. These parameters include
limitations on the size and complexity of the candidate
patterns, and the predefinition of the pattern templates
to consider. Other possible parameters are thresholds on
the frequency and accuracy of the candidate patterns on
the learning data. Indeed, when a candidate pattern oc-
curs very frequently, it might be the sign of triviality or
tautology. Similarly, one may decide to consider only can-
didate patterns that are never contradicted in the learning
data or tolerate a certain degree of falsification. Thus in
practice, a given technique T searches within a subspace
PT ⊆ A defined by its search space parameters. We call
this the search space of the technique. When the choice of
technique is obvious, we write simply P.

We further define three subregions of P, depending
on the “usefulness” of the patterns that can be discov-
ered in each one. The first subregion, symbolized by H ,
contains all patterns that can be understood by humans
with reasonable cognitive effort. These are, for example,
patterns that follow the guidelines proposed by Dwyer
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et al [6]. Patterns in H are generally small with low
complexity. The second subregion, symbolized by M,
contains the patterns that, while not humanly compre-
hensible, can still be efficiently leveraged by automated
techniques to assist humans in the correct usage of APIs.
This can take various forms, such as embedding into an
IDE a recommender system that suggests the most likely
API method to be used next, or detecting uncommon and
suspicious API usages. Patterns in M are large and/or
complex. The final subregion, symbolized by I, contains
patterns that cannot be practically used either by humans
or automated techniques. This patterns are generally too
large and too complex, and are generally extremely fre-
quent in the learning data. ObviouslyH ∪M∪I=P. An
overview of all the different regions of the search space is
illustrated in Figure 1.

3. Related Work

In recent years, much research effort has been dedi-
cated to specification mining. For instance, SpecForge
[14], synergize many existing finite state automaton based
on specification mining algorithms. SpecForge generates
a superior FSA from a set of FSAs mined with existing
algorithms. SpecForge extracts important constraints that
are common across the mined FSAs and combine the ex-
tracted constraints into one FSA model. It also uses linear
temporal logic to specify ordering constraints satisfied by
the FSA. In this paper, we are specifically interested in
the mining of API specifications and usage patterns [24].
The inference can generate unordered API usage patterns
that describe which API elements ought to be used to-
gether without considering the order of usage. However,
some approaches, also, take order into account and pro-
vide more detailed knowledge about the correct use of an
API in the form of sequential or temporal usage patterns
[24].

3.1. Unordered Usage Patterns Mining

Existing techniques for mining unordered API usage
patterns are valuable to facilitate API understanding and
usage.

Zhong et al. [38] developed the MAPO tool for mining
API usage patterns. MAPO clusters frequent API method
call extracted from code snippets, based on the number
of called API methods and textual similarity of class and
method names between different snippets.

Zhu et al. [40] propose an approach to mining API
usage examples from unit test code. They employed a
slicing technique to separate test scenarios into code ex-
amples. Then they cluster the similar usage examples for
recommendation.

Saied et al. [29] propose a clustering-based approach
to mining API usage patterns. Their technique combines
a static analysis of the API code (structural and semantic
dependencies of API methods) with a dynamic analysis

of execution traces of client programs (API methods co-
usage).

3.2. Temporal Usage Patterns Mining

As mentioned in Section 2, the space of possible API
temporal patterns is very large and potentially infinite.
One needs to use heuristics to explore this space. In the
following, we discuss the heuristics used and their impact
on the patterns that can be found.

A simple heuristic to explore the space of possible pat-
terns is to search for specific pattern templates. This has
been done, for example, by Yang et al. in the Perracotta
approach [37]. In this work, simple two-events patterns
are mined from the execution traces. These patterns fol-
low the template event1 always followed by event2. Such
simple patterns, once mined, can be combined to produce
larger patterns. A similar combination strategy was also
proposed by Gabel and Su in [8], but with a different for-
malism to represent the patterns. As stated by Lo et al.,
such combination methods might miss some multi-event
patterns or create ones that are not meaningful [18]. Al-
ternatively, Lo et al. generalize the two-event template to
a multi-event template, and mine patterns in the form of
whenever a series of events occurs, eventually another series
of events will occur. Uddin et al. [35] also considered the
multi-event template. They detect temporal sequential
patterns of API use in terms of their time of addition into
the source code during the client program development.
Due to the volatile nature of the development process,
detected patterns may suffer from some imprecision.

The above-mentioned approaches cannot mine com-
plex patterns such as When event1 occurs, either event2 oc-
curs just after and event3 will never occur after, or event2 will
not occur just after and event3 will eventually occur. Lemieux
et al. [15] proposed a model-checking-base tool, Texada, to
mine such complex patterns. However, the pattern tem-
plates used for the search have to be specified beforehand.
In other words, it is impossible to find what you are not
explicitly looking for. This precludes exploratory search-
ing, which can reveal previously unanticipated patterns.
A good metaphor to understand the difference between
mining specific pattern templates vs finding unspecified
patterns is one of the difference between automated anal-
ysis and visualization in program comprehension. In the
first, the goal is to get a precise response to a specific
question, whereas, in the second case, the goal is to get
an abstraction of the system, which can be explored even
without a specific question in mind.

3.3. Generalizing the Mining

The goal of our work is to generalize the template-based
mining of temporal API usage patterns to a non template-
based mining while keeping the search for temporal pat-
terns feasible. Rather than using the template heuristic,
we use a meta-heuristic to explore the space of possible
patterns, i.e, genetic programming. In this approach, we
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progressively construct sets of patterns of arbitrary form
and test their accuracy using the Texada tool [15].

3.4. API Pattern Usage
From the early years, teams have been mining software

artifacts in the search for useful information to link to doc-
umentation and good-practice guidelines. The closest to
our study is the work from Cergani et al. [3]. In this paper,
authors mine software repository to evaluate thresholds
between information at different level of order (Sequen-
tial, partial order and non ordered). With a specialized
AST-like representation, they derive event streams to sim-
ulate software usages. They show empirically the effi-
ciency of partial-order information i.e. like LTL patterns.
The main difference with our work reside in the use of real
traces to feed the learning process. Other works attempt to
augment API documentation by means of software repos-
itory mining. Teams automatically mine API usages from
source code with consideration regarding the frequencies
of connected subgraphs [39, 4]. Finally, the form in which
the result of such investigation are presented to end users
(i.e. generally developers) varies. Subramanian et al. mine
bidirectional link between documentation and code snip-
pets (or patterns) derived from source code and produce
a HTML report [33]. Sun et al. mine software repository
to assist the derivation of interfaces [34].

4. Complex temporal API usage patterns mining

Our approach consists in using genetic programming,
an evolutionary method, to mine temporal patterns from
execution traces. Genetic programming is a powerful
search method inspired by natural selection. The basic
idea is to make a population of candidate “programs”
evolve toward the solution of a specific problem. Each in-
dividual of the population is evaluated by a fitness func-
tion that determines its ability to solve the target problem.
New individuals are derived from existing one by apply-
ing genetic operators such as reproduction and crossover.

For our specific problem, we introduce the GenLTL al-
gorithm to progressively learn a set of temporal usage
patterns in the form of LTL expressions. GenLTL explores
the space of possible LTL expressions representing combi-
nations of method calls on an API with logical and tempo-
ral operators. The exploration is guided by the potential
of each candidate pattern to capture correctly repetitive
complex sequences of library method calls from client pro-
grams. To determine this potential, LTL expressions are
assessed using a model checker on the execution traces.

4.1. Approach Overview
Figure 2 provides a high-level overview of the evolu-

tionary approach proposed in this paper. The first step
of our approach is to generate the initial set of LTL pat-
terns to start the evolutionary process. Then, the first set
of patterns is evaluated on the available execution traces.

For every pattern, we measure its frequency and a form of
accuracy called confidence. These two measures allow us
to rank the patterns. Following that, pairs of patterns in
the current iteration are mixed and mutated using genetic
operators to drive new patterns, which are added to the
next iteration. This process is repeated for a fixed number
of iterations.

In the remainder of this section, we give the details
about the different component of our algorithm: (i) en-
coding and generation of LTL patterns, (ii), evaluation of
of the patterns, and (iii), the derivation of new patterns
from the current ones during the evolution.

Create initial population 
of LTL formulas

Evaluate formulas using 
traces

Replace current 
population with the new 

one

Return best formula set

End 
Criteria

Yes

No

Derive new formulas 
using genetic operators

Figure 2: Approach overview

4.2. Encoding and generating LTL Patterns
LTL patterns are represented as an unbalanced binary

tree. The tree contains two types of nodes: Operators (in-
ner nodes) and Variable (leaf nodes). The tree is built so
that the subtree(s) of a given node represents that opera-
tor’s operand(s), as shown in the example of Figure 3.

• An operator node represents one operator accepted
in LTL syntax and has one (unary) or two (binary)
child nodes. The internal representation of the node’s
operator contains its name, symbol and type (Unary
or Binary).

• A variable node refers to a method in the traces, which
is represented by a symbol for legibility and perfor-
mance reasons.

The tree is built such that an in-order traversal of the tree
gives the syntactically correct representation. For that
purpose, children of unary operator nodes are considered
right-children with no left-sibling.

Figure 3 shows an example of a tree representing a pat-
tern. The LTL pattern represented is

G(m1→ XFm2) ∧ G(¬m2 ∪m1)

This pattern means a call to the API method m1() is always
followed by a call to the API method m2(), and method
m2() cannot be called before the method m1()

The initial population is composed of N temporal pat-
terns. This initial set of LTL patterns is generated fol-
lowing a top-down recursive algorithm to build patterns’
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Table 1: Blocks used in the pattern generation algorithm

LTL Pattern Logical Meaning
G(x→ Xy) Event x always directly followed by event y
G(x→ X!y) Event x never directly followed by event y
G(x→ XFy) Event x always eventually followed by event y
G(x→ XG(!y)) Event x never eventually followed by event y

Figure 3: LTL binary tree

trees. An important aspect of the pattern generation algo-
rithm is the use of “basic blocks”, which are small, two-
variable LTL expressions that are inserted at the bottom
of generated pattern trees. These blocks represent linear
correlations of events that have a meaning in the context
of stack traces. They are included in the generated trees as
to ensure that the initial LTL is at least somewhat sensible
in the context of execution traces. Blocks are randomly
selected from a small set (see Table 1). It is important to
note that all blocks only contain free variables when in-
serted. Once the tree is built, all variables of the formula
are randomly bound to the method calls in the traces. We
ensure, however, that two instances of the same variable
must share the same binding. We additionally check two
integrity conditions: block intersection and block triviality.

• The block intersection condition specifies that each
block of a single pattern must share, at least,
one variable with one of the other blocks of
the pattern. For example, the following pat-
tern (a→ Xb) ∨ (b→ XF(c)) ∧ (d→ XG(¬a)) respects
the condition, whereas that one does not re-
spects the condition since the third block is com-
pletely independent from the rest of the pattern
(a→ Xb) ∨ (b→ XF(c)) ∧ (d→ XG(¬e))

• The block triviality condition specifies that no block
of the pattern may have twice the same variable. As
such, blocks like (a→ XFa) are rejected since they are
usually either trivially true or trivially false.

4.3. Evaluating LTL Patterns
The evaluation of a potential LTL pattern consists in

assessing its ability to capture the regularities in traces

used in the mining process. This assessment is performed
using Texada [15], a model checker. In this section, we
starts by introducing Texada. Then, we detail the fitness
function used in the evaluation.

4.3.1. Texada
Texada is a model checker that dynamically mines tem-

poral specification in LTL from events or log. It can be
used in different ways. The way we used in this work is
to take an LTL pattern, i.e., an LTL formula, and check for
all its occurrences in the traces. This process is done by
evaluating three metrics: support, potential support and
confidence. These are defined as follow:

• Potential support: For a pattern p, the potential sup-
port is the number of events in the traces that could
falsify p. For a pattern a call to method m1 is always
followed by a call to method m2, the potential support
counts the number of times m1 is called in the traces.

• Support: support is the number of events that could
falsify p, but do not falsify p. For our example, the
support is the number of times m2 is called right after
m1.

• Confidence: For a pattern p, confidence is the ratio of
support over potential support.

To illustrate the calculation of the three metrics, let us
consider the LTL pattern f : G(a→ XG(b→ XFc)), or with
a short representation (a, b) → c. This pattern means that
c should happen after every sequence of a, b (even if other
events occur between a and b). Consider now the trace set
T composed by five traces t0, t1, t2, t3, t4 shown in Table 2.

Table 2: Trace set T

Trace events
t0 a,b,c
t1 a,d,b,c
t2 a,b,d,c
t3 a,d,b
t4 d,b,a,c

Table 3 summarizes the calculation of the potential sup-
port (events underlined) and support (event in boldface
following the underlined events) for the trace set T. This
results in a potential support of 4, a support of 3 and a
confidence of 3/4 = 0.75.

4.3.2. Fitness Function
To evaluate the fitness of LTL patterns, we have to eval-

uate the “performance” of each pattern on the execution
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Table 3: result summary

Trace events Potential support Support
t0 a,b,c 1 1
t1 a,d,b,c 1 1
t2 a,b,d,c 1 1
t3 a,d,b 1 0
t4 d,b,a,c 0 0
T 4 3

traces.
The definition of the fitness function is inspired by the

two following heuristics:
• Penalize patterns that under-support. Patterns with

low support should be penalized compared to other
patterns. Since low support patterns, while they can
have high confidence, are usually more specific pat-
terns that are not easily generalizable. As such, they
are less interesting than patterns with high support.
In our experiments, we consider that a pattern under-
supports if the potential support is less than 3.

• Penalize patterns that over-support. Patterns with
extremely high support are trivial. In our experi-
ments, we consider that a pattern over-supports if the
potential support is greater than the trace set length.

For these reasons, the fitness function should separate
the patterns in three “layers”. The bottom layer contains
patterns that over-support, the middle layer for patterns
that under-support and the top layer for those with a
good-support. These layers are created by a static fitness
boost given to each category. The boost for the over-
support and under-support categories is 0, and for good-
support category is 0.5.

We therefore define the fitness function of GenLTL for
a pattern p and a trace set T as:

f itness(p) = boost(p) + 0.5 ∗ con f idence(p)

where boost is defined as:

boost(p) =


0 i f support potential(p) < 3
0 i f support potential(p) > length(T)

0.5 i f support potential(p) ∈
[
3, length(T)

]
4.4. Genetic Operators

To create the next generation, the algorithm relies on
genetic operators to generate new patterns from existing
ones. In order to maximize the variability in the new gen-
erated patterns, the mutations are not applied uniformly
at each generation. To generate a new pattern, two starting
patterns are picked at random using one of two methods:
Fitness Proportionate or Tournament.

New patterns are created by probabilistically applying
genetic operators in two steps. The first step concerns
the crossover with both seed patterns crossed over with
probability c. The resulting patterns (no matter if crossed

over or not) are then randomly transformed by one of the
mutations with probability m.

Modified patterns must respect all rules of property-
checking. Table 4 shows some examples of possible mu-
tations with integrity checking. In order to conserve in-
tegrity across mutations, the modifications applied on
existing patterns cannot alter the structure of the basic
blocks within it. Blocks can be swapped and their bind-
ings changed, but the structure must stay the same. To
implement this restriction, all trees have a “breakpoint”
node separating the blocks from the rest of the tree. With
the exception of binding mutations, no operation may
modify nodes under the breakpoint.

Crossover. As illustrated in Figure 4, the crossover
operator takes two patterns as input and produce two
new patterns as output. The principle of this crossover is
to select a subtree in each of the two patterns and switch
them from one pattern to the other. Subtree of node α in
tree A becomes subtree of node β in tree B and subtree of
node β in tree B becomes subtree of node α in tree A. It is
important to note that if a root node is picked as a switch
node, the whole tree will be switched. When two subtrees
are chosen to be swapped, the algorithm verifies that the
cutting point is not located inside a basic block (or under a
breakpoint as it may). Only when two valid cutting points
are found are the subtrees swapped. Once the swapping is
complete, both trees’ integrity are checked. If either tree
break block triviality or block intersection, the bindings
are reworked (see binding Mutation below).

Operator Mutation. The operator mutation simply
picks a random operator from the tree and replaces it
by another operator of the same type. Unary operators
are replaced by unary operators and binary operators by
binary operators. However, in order to preserve block
integrity, this mutation cannot modify operators inside
basic blocks (effectively under the breakpoint).

Encapsulation Mutation. The encapsulation mutation
simply takes an LTL tree and adds a unary operator at
the top, that operator becoming the new root of the tree.
This effectively takes an LTL pattern and surrounds it by a
unary operator. For example, the pattern x→ Xy could be
mutated into G(x← Xy) should the G operator be applied
to it. The encapsulated subtree may not be inside a basic
block (A basic block can, however, be encapsulated with
the new operator over the breakpoint).

Binding Mutation. The binding mutation simply
changes the binding event of a variable for another event.
Once the binding is changed, both block triviality and
block intersection are checked. If block triviality is bro-
ken, another binding is chosen. If block intersection is
broken, a connection is renewed using the new bindings.

5. Evaluation

5.1. Research Questions
To evaluate the efficiency and relevance of our ap-

proach, we defined four research questions:
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Table 4: Example of possible mutations with integrity checking

Mutations Original pattern New pattern
Operator G(x→ Xy) ∨ G(x→ Xz) G(x→ Xy) ∧ G(x→ Xz)

Encapsulation G(x→ Xy) ∨ G(x→ Xz) G(G(x→ Xy) ∨ G(x→ Xz))
Binding (“eventA”→ X“eventB”) ∧ (“eventA”→ X“eventC”) (“eventD”→ X“eventB”) ∧ (“eventD”→ X“eventC”)

Crossover G(x→ Xy) ∨ G(x→ Xz),G(a→ XF(z)) ∨ G(z→ Xw) G(a→ XF(z)) ∨ G(x→ Xz),G(x→ Xy) ∨ G(y→ Xw)

P1

P2

P12
P21

Crossover

Mutation P1 P1’

Figure 4: Genetic Operators

• RQ1: What kind of patterns we can infer with our
approach?

• RQ2: Are the inferred patterns generalizable to other
“new” client programs that are non-seen in the min-
ing process?

• RQ3: Are the inferred patterns meaningful for devel-
opers?

• RQ4: What kind of LTL patterns are mined with a
non-evolutionary state-of-the-art approach?

5.2. Experimental Setup

5.2.1. Data
We evaluate our technique through the usage of 8

widely used APIs from the Android platform: database,
graphics, hardware, text, util, view, webkit, widget.

To perform our study, we selected 45 mobile apps using
these APIs as shown in Table 5. To select the mobile apps,
we opted for diversifying the validation dataset as much
as possible. Thus we selected Android apps belonging
to different domains. To assess the generalizability of the
patterns we selected Android apps using multiple APIs.
Table 6 show the distribution of the selected apps across
the different APIs as well as Android categories. The APIs
usage was inferred from the execution trace of typical us-
age scenarios for each app. Traces are an input of our
methods and they should follow the structure required
by Texada, which is a global liner input trace composed
of multiple traces, each of which is composed of a totally
ordered sequence of events (API method call) and traces
should be separated with a trace separator. We provide
the used traces for replication purposes and for more in-
formation on the amount of data collected for each API 1.
To avoid experimenter biases, we used independent usage

1http://geodes.iro.umontreal.ca/publication material/ist19/

scenarios defined in a previous study on energy consump-
tion of API methods [16]. The traces are derived from 45
clients using the considered APIs. The original traces
were processed to generate API specific traces based on
the entry and exit time of each API method. As we are
interested only in calls client-to-API, we only kept the first
nesting level, which means that if an API method m2 is
called from an API method m1, we do not consider it in
the derived trace.

5.2.2. Procedure
For each research question, we present the research pro-

cedure to answer it. To address research question RQ1
we run GenLTL on the whole dataset of traces. The ter-
mination condition of the learning process is when we
reach the maximum number of fitness evaluations, which
is 15000, over a horizon of 50 generations with a popu-
lation size of 300. Then we only consider patterns with
the perfect fitness score at last iteration (i.e. 1.0). There
are no general rules to determine these parameters, and
thus, we set the combination of parameter values by trial
and error method, which is commonly used in the SBSE
community. We opted for a large population rather than
many Generations and our intuition was that the proba-
bility that these individuals produce interesting offspring
increases with the population size thus larger populations
can allow better crossover combinations.

To evaluate the structure of the inferred patterns and
how complex they are, we compute the following metrics
presented TODO: Bad line break after table. FIXED in Ta-
ble 7. Number of Events is the number of method calls
found in the trace data for the given API. Then we show
the number of traces collected from client apps for each
API. The coverage present on average the percentage of
methods in the trace covered by the patterns methods.
Number of patterns is the number of distinct LTL expres-
sions mined in the trace of a given API. Methods per
pattern is the average number of distinct methods per
pattern. Pattern Depth is in average, the highest number
of nodes from the root of the LTL tree to the beginning
of a basic block. Pattern width is the average number of
leaves in the patterns’ tree. The width says on average
how many methods are used in the patterns since po-
tentially the same method may be used more than one
time. Finally Average support as defined in the previous
section.

The mining of usage patterns for an API depends on
the used set of API’s client programs (training client pro-
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Table 5: Dataset used in the experiment

Apps version widget webkit view util text hardware graphics database
Textgram 2.3.15 X X X
Antivirus Free 6.11.6 X X X X
Simple Weather 1.1.3 X X X X
Opera Mini web browser 7.5.3 X X
News swipe 1.0.0 X X X X X
Easy Birthday Reminders 1.2.1 X X X X X
8.500+ Drink Recipes 1.0.6 X X X
Anti Mosquito Sonic Repellent – X X X X X
Arcane legends 1.0.7 X X X
Write Now Notepad 1.1.5 X X
Better Browser 2.3 X X X
gReminders 0.9.7 X X
Dr.Web Antivirus Light – X X X
10.000 Quotes DB (FREE!) 3.0.4 X X X
Bubble blast 2 1.0.3 X X
Livo Recorder Lite 3.7.0 X X X
MasterCard ATM Hunter 1.4 X X X
SimpleNews 1.4 X X
Activity Express Task Manager 1.22 X X
5001 Amazing Facts Free 3.2.0 X X X X
AnEq Equalizer Free 1.0.9 X X X
Wifi Radar 1.06 X X X X X X
Botanica 1 X X
Advanced Task Manager 2.1.2 X X X X
Anti dog mosquito whistle 1.3 X X X
Better Notepad 0.0.5 X
Map quest 1.8.1 X X
Inspiring Quotes 1.2 X X
Despicable me (minion rush) 1.1.0 X
Droid Wifi Analyzer 1.3 X
Battery HD 1.16 X
Icey Slot 2.9 X
Oxford AZ of English Usage 4.3.0 X
aTimer 1.3 X
Classical Music Radio Lite 1.0.3 X
TED 2.0.1 X
Droid Notepad 1.11 X
Rome – X
AndRecorder Free 3 X
Sleep Sound Aid – X
AudioPlayer 1.2 X X
25000 Best Quotes 1.0.7 X
fAnime Radio Online 1.06 X X
Meridian Media Player Revolute 2.4.5 X X
World Travel Guide by Triposo 2.1 X
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Table 6: Distribution of 45 apps across APIs and categories

API Apps Category Apps Category Apps
widget 5 (11.11%) ARCADE 1 (2.22%) FINANCE 1 (2.22%)
webkit 12 (26.67%) BOOKS AND REFERENCE 4 (8.89%) HEALTH AND FITNESS 2 (4.44%)
view 35 (77.78%) BRAIN 1 (2.22%) LIFESTYLE 1 (2.22%)
util 15 (33.33%) BUSINESS 1 (2.22%) MEDIA AND VIDEO 2 (4.44%)
text 9 (20.00%) CARDS 1 (2.22%) MUSIC AND AUDIO 5 (11.11%)
hardware 3 (6.67%) CASUAL 1 (2.22%) NEWS AND MAGAZINES 3 (6.67%)
graphics 18 (40.00%) COMMUNICATION 2 (4.44%) PRODUCTIVITY 4 (8.89%)
database 9 (20.00%) EDUCATION 1 (2.22%) TOOLS 10 (22.22%)
– – ENTERTAINMENT 2 (4.44%) TRAVEL AND LOCAL 3 (6.67%)

grams). Hence, to address our research question RQ2,
we need to evaluate whether the detected API’s usage
patterns will remain with similar confidence degree in
the context of new client programs of the API (validation
client programs). Our hypothesis is that: detected us-
age patterns for an API are said “generalizable” if they
remain characterized by a high confidence degree in the
contexts of various API client programs. This is regardless
of the natures and features of those client programs, and
of whether those programs were used or not for detecting
the API’s usage patterns.

To evaluate the generalizability of detected patterns,
we perform leave-one-out cross-validations for all the se-
lected APIs while considering the client programs using
each API in the considered set of 45 mobile apps selected
for our study. Let N represents the number of used client
programs for the considered API (e.g., N = 37 for the view
API), we perform N runs of GenLTL on the API. Each run
uses N-1 client programs as training client programs for
detecting usage patterns and leaves away one of the APIs
client programs as validation client programs. The results
are sorted in N runs, where each run has its associated
usage patterns and its corresponding training and valida-
tion client programs. We use the leave-one-out strategy
instead of tradition k-fold, because it represents realistic
scenarios for our problem. Indeed, the usage scenario
of our approach corresponds to a situation where pat-
terns learned from a reasonable set of existing API clients
should apply to a new client under development. Addi-
tionally, leave-one-out is suitable when the set of training
data is relatively small, which is our case.

Then, we address our second question (RQ2) in two
steps, as follows. In the first step, for each run of the cross-
validation, we selected the inferred patterns that have a
confidence degree upper than a certain threshold (in our
experiment the threshold was 80%). In the second step,
for each selected pattern we use the Texada tool to check
if the pattern actually holds in the trace of the validation
client and with which confidence degree. The goal is to
see if good patterns remain good in the context of new
client programs.

To answer research question RQ3, i.e., evaluate
the meaningfulness of the mined patterns from a hu-

man perspective, two authors analyzed qualitatively
the inferred patterns generated for a database API
(android.database.sqlite). We focused on a single API so
that evaluators could familiarize themselves to a reason-
able degree with rich, in-depth information taken from its
documentation.

The goal behind research question RQ4 is to compare
our approach with a baseline approach, through shedding
light on the kind of patterns that it could infer.

We selected the approach proposed by Lo et al. [18] as
it presents a different and very interesting idea for mining
non-trivial API usage patterns. Moreover, to the best of
our knowledge, the select approach is most similar to our
approach from the perspective of the required input and
the produced patterns. The selected approach, mines a
set of temporal rules of arbitrary lengths from program
execution traces. Then it represents the mined rules as
LTL expressions, so that existing model checkers could
consume the mined rule [18] .

We implemented the approach proposed by Lo et al., as
best as we could according to the description and details
provided in [18]. This implementation aims at mining
patterns in the form of:

(a, b)→ (c, d)

which reads, whenever a series of pre-conditions events
(a,b) occur, eventually, another series of post-condition
events (c,d) will occur. The set of pre-conditions and post-
conditions events satisfying a minimal support and con-
fidence thresholds are mined using BIDE [36], the closed
sequential pattern miner.

The original approach used a miner modified from
BIDE, and we were not able to have access to the de-
tails of the modification. Moreover, the original approach
defined a filtering step to discard rules that could be gen-
eralized to other rules and keep only a minimal subset of
rules. This filtering step added a significant over had to
the mining process and thus we decided to avoid it. These
two differences make the resulting implementation, more
an inspiration of the original approach rather than an ex-
act implementation.
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5.2.3. Results

RQ1: What kind of patterns we can infer with our approach?
A cursory look at the results of Table 7 reveals some in-

teresting details that merit an in-depth analysis. First, it is
worth to mention that we show the characteristics of solu-
tions found (i.e. patterns with fitness 1.0 at last iteration).
The inferred patterns for all studied API have a high aver-
age confidence that reach 100%. These high confidences
seem to lend credence to the idea that most patterns found
with GenLTL will be reliable since, in most cases, they will
be respected in the API properties. If, by opposition, the
confidence were to be found low, this would cast doubts
on the usability of found patterns since, even if interest-
ing, the found patterns wouldn’t be respected most of the
time.

A second noteworthy detail is the consistently high
amount of support for each API (last column in Table 7).
This support reinforces the usability of patterns found
through the GenLTL algorithm since it implies that the
found pattern is usually used throughout the API and not
at one single point in the API. Patterns with such support
would then be trivial to generalize; something that is not
easily done with low support patterns. For example, a
pattern with a confidence of 100% but support of 1 would
be of little interest since, even if it has a high confidence,
the low support would indicate that the pattern is used
sparingly through a typical use of the API and therefore,
hard to generalize.

A third interesting detail found in the results is the fact
that the graphics and util APIs have low coverage (8%)
compared to other APIs (the fourth column in Table 7).
The presence of such low coverage amidst the results
seems to indicate that GenLTL can not only find “gen-
eral” patterns (patterns concern a big portion of the API)
but also “local” patterns (patterns that concern specific
set of methods in API). A last detail of note is the fact
that patterns found in the database API are, on average,
more complex than those found in other APIs. Indeed,
the number of methods per pattern, the depth and width
of patterns (respectively the 6th, 7th and 8th column of
Table 7) are all higher in this API as compared to others.
This fact seems to indicate that a bigger number of meth-
ods are interdependent in this API and that their usage
more closely correlate to one another. This can probably
be explained by the fact that the database API have more
methods that need to be called together for the whole API
to function.

RQ2: Are the inferred patterns generalizable to other “new”
client programs that are non-seen in the mining process?

In Figure 5 we plot for each API the confidence degree of
the selected pattern in both the training or learning process
API L and the validation or testing process API T.

The boxplots show that a very few degradation in the
confidence degree can be observed between training and
validation context. Actually, except for database, webKit

and widget, the confidence degree was almost equal to
100 % for all the other APIs in both contexts which re-
flect a very high generalizability for the mined patterns.
The worst degradation in the confidence degree was no-
ticed for the widget API, this could be explained by the
fact that the widget package contains mostly UI elements
to use to create an application widget, and most of the
apps can have different widgets and we can even have the
same app proposing different widgets to its end user, with
means the use of this API may vary from an application
to another. However, despite we had the worst degrada-
tion for the widget API, the confidence degree remain over
90% in both training and validation context. Finally, hard-
ware API shows 100% confidence degree. This is due to
the reduced number and the triviality of its traces whose
distincts methods are only 4 and come over-repeatedly
in the traces. Nevertheless, this corner case figures how
applicable is our approach on real world (often erratic)
cases.

These results show that the mined patterns with our
technique can be used to enhance the API documentation
with high confidence without a need to consider all possi-
ble usage contexts (client programs) of the API of interest.

RQ3: Are the inferred patterns meaningful for developers?
At the start, the evaluators did a calibration session,

where they analyzed 7 patterns together and established
the following procedure:

a) Summarize the structure of the pattern and identify
its components.

b) Search in the API documentation for a 1-line descrip-
tion of each method involved in the pattern.

c) Write a description of each component in natural lan-
guage.

d) If the descriptions of each component are meaning-
ful, write an overall natural language description (a
“story”) for the entire pattern.

e) Indicate whether the story is “sensible” or “not sen-
sible”.

Using this procedure, each evaluator examined inde-
pendently a sample of 22 additional patterns with support
value between 5 and 823. The first evaluator classified 12
out of 22 patterns as sensible; the second evaluator 15
out of 22. There were 3 instances where the two eval-
uators expressed conflicting opinions, and the Cohen’s
Kappa coefficient was calculated as 0.53, indicating mod-
erate inter-evaluator agreement. These observations are
preliminary evidence that GenLTL can produce meaning-
ful patterns. To further illustrate this, we describe some
characteristic cases.

First consider the pattern P1:

G(c→ XG(¬b)) ⊕ G(c→ X¬a)

The variables in P1 are the methods of classes in the API,
listed in Table 8. P1 is an exclusive disjunction (XOR) de-
composition of two base block subformulas. The first sub-
formula describes the constraint that an update operation
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Table 7: Descriptive statistics of our setting and results

Traces Patterns
API Nb Nb coverage Nb Nb method depthPattern widthPattern support

events traces patterns PerPattern
database 4057 10 0.44 124 6.07 2.40 7.00 567.47
graphics 1210 21 0.08 115 5.26 2.23 6.34 278.05

hardware 559 3 0.47 80 3.33 2.42 6.76 158.13
text 483 12 0.21 89 3.87 2.37 6.99 101.28
util 878 27 0.08 115 5.36 2.34 6.74 168.64

view 1255 45 0.12 115 5.15 2.24 6.59 335.73
webkit 320 15 0.33 110 4.78 2.51 7.09 28.47
widget 444 5 0.31 94 3.99 2.23 6.45 86.40

Figure 5: Patterns Generalizability

Table 8: Variables used in qualitatively analyzed mined patterns.

Variable Methods in P1
a SQLiteClosable.close()

b SQLiteOpenHelper.onOpen()

c SQLiteDatabase.update()

Variable Methods in P2
p86 SQLiteQueryBuilder.query3()

p48 SQLiteDatabase.compileStatement()

p67 SQLiteOpenHelper.SQLiteOpenHelper()

p85 SQLiteQueryBuilder.query1()

p48 SQLiteDatabase.compileStatement()

Parameter types omitted for brevity. The overloaded methods query3
and query1 are indexed by the order by which they appear in the API
documentation.

should never be followed by a state where the database
is being opened. The second subformula describes the
constraint that an update operation should never be im-
mediately followed by a close operation. Since the XOR
composition of those two blocks implies that only one of
the two block must be true at any time time, the resulting
pattern “story” can be expressed as follows: After calling
update, if we call close, then onOpen will never be called.
This is a sensible scenario as one would not call a onOpen

method after closing a database. In the opposite case, if

close is not called right away, it makes sense that onOpen
would eventually be called.

We also consider the more complex pattern P2:

(G((p86→ Xp48)→ XXp67)→ ((p85→ ¬XFp85)UXp48))

The variables in P2 are the methods of classes in the API,
listed in Table 8. P2 consists of two component subformu-
las, connected by an implication operator. The first sub-
formula describes a sequence of operations: the execution
of a query, followed by the compilation of a statement,
followed by the creation of an helper object, used for the
opening of new database instances. The second subfor-
mula defines a constraint: the execution of a query cannot
be repeated until a new statement is compiled. The im-
plication between the two subformulas thus expresses the
following “story”: If the method used for extracting data
from the database involves compiling a new statement
and opening a new database object after every query, then
compiled queries cannot be reused.

These two examples illustrate vividly the kinds of rich
behavioural patterns that can be created with GenLTL.
RQ4: What kind of LTL patterns are mined with a non-
evolutionary state-of-the-art approach?

We run the implemented baseline approach on the
dataset of traces considered for RQ1, we started with min-
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imal support and confidence thresholds of 80%. For each
API we either obtain the results within an hour, or we relax
the initial thresholds with a step of 10% and we restart the
mining process. At the end, we were only able to infer pat-
terns for the APIs view, webkit, graphics, and util. Results
are presented in Table 9, to have an idea of the complexity
of inferred patterns we present the following metrics. The
number of distinct patterns mined in the trace of a given
API, the pattern depth and width as defined for RQ1. as
well as the first values of the input parameters minimal
support and confidence for which we could infer patterns
from the considered API Trace.

For high values of support and confidence parameters,
the inferred patterns are supposed to be generalizable to
other client systems, However, we noticed that for such
values the inferred patterns are rare. Moreover, although
the technique is meant for mining nontrivial patterns, we
notice that the inferred patterns are on average formed
of 3 methods and reached a maximum depth of 2 nodes.
the inferred rules s are of course more complex than the
standard two-event rules but are still less complex than the
ones mined with our technique GenLTL. In addition from
expressiveness perspective, the mined rules are limited to
the following expressions whereas in the case of GenLTL
we are not constrained with a pre-defined reference of
how the pattern might look like:

a→ b : G(a→ XFb)

(a, b)→ c : G(a→ XG(b→ XFc))

a→ (b, c) : G(a→ XF(b ∧ XFc))

(a, b)→ (c, d) : G(a→ XG(b→ XF(c ∧ XFd)))

We also have to mention that most of the time it is
hard to decide on the best parameters to mine each trace.
For instance, as soon as we relax the minimal support
and confidence thresholds the pre-conditions and post-
conditions events of the mined rules could be of arbitrary
lengths which could drastically increase the complexity
of the patterns. For example, with 70/70 as minSupport/
minConfidence input, we mined a rule for the view API
with 11 methods as a width of the pattern, and we were
unable to check it with Texada.

Threats to Validity. Even though we performed experi-
ments on 8 different APIs, the choice of APIs may pose
threats to the generalizability of our conclusions, as they
all belong to the Android platform. In future work, we
plan to evaluate our approach on APIs and client systems
belonging to different domains, having different sizes and
coming from different organizations.

An additional threat to validity is posed by the assump-
tions underlying our choices of tools and mechanisms
used in our experiments and technique. We completely
rely on the Texada tool [15] to compute important metrics
such us the pattern support and confidence. This could

impact the extent to which our actual observations corre-
sponded to the phenomena that we intended to observe,
this posing a threat to construct validity. To mitigate this
threat, three of the authors tested the tool separately on
different basic and complex examples to check that it ac-
tually performs what is mentioned in its documentation.

Experimenter expectancy effect is another possible
threat to validity. Indeed, for RQ3, the manual inspec-
tion was performed by two of the authors. To attenuate
this threat, we followed a rigorous process with a calibra-
tion session. To have a more objective evaluation, we plan
to replicate the study with independent subjects.

It is to mention that the algorithm takes between 3 to
45 minutes to perform. Yet, mining patterns is not meant
to be run in a real-time context and therefore remains
practicable in a real world application.

Another potential threat to the validity of our results is
related to the relatively high number of solutions explored
by our algorithm when searching for patterns. To assess
whether our results are attributable to our approach or to
the number of solutions explored, we performed a sanity
check using the database API. We compared GenLTL to
random search on three independent runs. In each run,
we generated randomly a number of solutions equal to
the number of solutions explored by GenLTL (popula-
tion size * number of generations). The random solutions
contain patterns with equivalent confidence values than
those of GenLTL. However, these patterns are very simple,
i.e., temporal relations between two methods, whereas,
the patterns of GenLTL capture more sophisticated tem-
poral relations involving many methods. We are, then,
confident that random search cannot generate complex
patterns with the same level of confidence than GenLTL.

6. Usage of API Temporal Patterns

We have created the tool Tapir2 (Temporal API Recom-
mender) that guides developers in using APIs based on
mined temporal patterns. In this section, we present how
it integrates temporal patterns into development activi-
ties. Specifically, Tapir focuses on four development ac-
tivities where we can take advantage of the LTL patterns
as illustrated in Figure 6:

a) During testing, Tapir can verify whether execution
traces of API client code satisfy the mined patterns.

b) At compilation time, it can assess whether API client
code satisfies the pattern using static analysis to warn
users of potential problems.

c) During programming, it can provide developers with
warnings, as well as recommendations for complet-
ing client code with API calls.

d) Finally, we envision using Tapir to augment existing
API documentation by interpreting the automatically
mined patterns into structured natural language.

2https://bitbucket.org/ErickFifa/tapir/
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Table 9: Descriptive statistics for the implementation of Lo et al. [18]

API NB patterns depthPattern widthPattern minSupport/ minConfidence
view 1 1 2 80/80
graphics 2 1.5 2.5 60/60
util 9 1.8 2.8 30/30
webkit 2 2 2 80/80

G(m1 → XFm2) ∧ G(¬m2 ∪m1)P1

G(c → XG(¬b)) ⊕ (c → X ¬a)P2

(G((p86 → Xp48) → XXp67) → 
((p85 → ¬XFp85)UXp48))P3

Client Traces Patterns

Before coding During coding After coding

Artefacts   Documentation Coding assistance Compilation report
Testing based pattern 

conformance

Goal  

● Documentation 
and comments

● Warnings and todos
● Code completion

● Report about broken 
patterns

● Report on broken 
patterns

Traces to 
check  

● No traces ● Pseudo-traces derived 
from partial source 
code

● Pseudo-traces derived 
from source code

● Test cases execution 
traces

Figure 6: Tapir use cases.

In the following, we use a running example to illustrate
how Tapir leverages mined API usage patterns in these
contexts.

6.1. Running Example
We use the example of the CIDR Calculator An-

droid app3, that uses the android.database.sqlite API4.
Specifically, we consider the class HistoryProvider. This
class is responsible of creating, opening and upgrading
a history database. Within the class, there are several
sqlite API calls, specifically from the classes referred in
Table 10.

We further consider the pattern PRE, that was mined
during the evaluation presented in Section 5:

(((p41→ ¬XFp41) U Xp69)

→

((p38→ ¬XFp38) U Xp30))

3https://github.com/rmceoin/cidrcalculator
4https://developer.android.com/reference/android/

database/sqlite/package-summary

Table 10: Variables used in running example pattern PRE.

Classes
android.database.Cursor

android.content.SharedPreferences

android.database.sqlite.SQLiteDatabase

Variable Methods in P2
p41 Cursor#close()

p69 SQLiteDatabase#getWritableDB(String)

p38 SharedPreferences#getString(int, String)

p30 Cursor#moveToPosition(int)

The variables p41, p69, p38, and p30 are shorthand for
API calls as shown in Table 10.

Effectively, PRE is made up of two sub-patterns. The
sub-pattern PRE1 defines a rule that a Cursor should not be
closed twice before the method getWritableDB is invoked.
The sub-pattern PRE2, defines a rule that getString can-
not be invoked twice before moveToPosition is invoked.
Overall then PRE says that if the rule PRE1 holds in a trace,
so should the rule PRE2. Effectively, if a file is reasonably
managed by not being closed twice, then it is expected
that reasonable usage also means not doing repeated reads
from the same cursor position.
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Listing 1: The method keepCheck().

private void keepCheck(SQLiteDatabase db) {

if (debug) Log.d(TAG, "keepCheck()");

long count;

try {

SQLiteStatement r = db.compileStatement("

SELECT count(*) FROM " +

HISTORY_TABLE_NAME);

// Call of getWritableDatabase: p69

count = r.simpleQueryForLong();

} catch (SQLiteException e) {

e.printStackTrace();

return;
}

Context context = getContext();

if (context == null) {

return;
}

SharedPreferences sp = PreferenceManager.

getDefaultSharedPreferences(context);

String historyEntries = sp.getString(Preferences

.PREFERENCE_HISTORY_ENTRIES , "100");

int maxRows = Integer.parseInt(historyEntries);

if (count > maxRows) {

if (debug) Log.d(TAG, "keepCheck: greater 

than " + maxRows);

Cursor c;

try {

String[] projection = {History._ID};

c = db.query(HISTORY_TABLE_NAME ,

projection , null, null, null, null,
History.DEFAULT_SORT_ORDER);

c.moveToPosition(maxRows);

while (!c.isAfterLast()) {

int rowId = c.getInt(0);

if (debug) Log.d(TAG, "keepCheck: 

need to delete " + rowId);

db.delete(HISTORY_TABLE_NAME ,

History._ID + "=" + rowId, null);
c.moveToNext();

}

c.close();

} catch (SQLiteException e) {

e.printStackTrace();

}

}

}

Listing 1 shows a relevant snippet of the method
HistoryProvider#keepCheck(). In the following, we will
be using it and the pattern PRE to show how mined API
patterns can be leveraged during software development
by Tapir.

6.2. Testing Time
Given an execution trace t of a client, Tapir can verify

whether t satisfies some mined API pattern p. Such ex-
ecution traces are collected during code testing and are
preprocessed to only keep events corresponding to API
calls. Tapir takes as inputs the trace t and the pattern p
and outputs a pair of values (support, potential support), as
defined in Section 4. If the result is (0,0), the pattern p
is not relevant to the trace t, as none of the methods in
p are being present in t. If the two values are equal and
non-zero, the pattern p is relevant to t, and t satisfies p.
Developers can choose whether to be informed about pat-
terns that are relevant and satisfied. In the third option
(different, non-zero values), the pattern p is relevant to t
(i.e., t uses methods involved in p), however t does not
satisfy p. This could be an indication of potential API mis-
use. In such cases, Tapir outputs a warning to the user for
further manual analysis.

In the keepCheck() example, the code could be repre-
sented as shown in Listing 2 by filtering and indexing the
relevant information. From this representation, it infers
the trace t1 shown in Listing 3 and produces the output is
support = 4 and potential support = 5. This result indicates
that the pattern PRE is relevant for this code fragment but
is not satisfied. Thus Tapir produces a warning to alert the
user of a potential misuse of the API in the keepCheck()
method.

Future updates to Tapir will put the emphasis on clos-
ing the loop with the user. Since currently execution traces
are tested based on patterns mined from existing client
code, there may exist legitimate usages of the API that are
not captured (or even contradict) the mined patterns. If a
developer chooses to ignore a testing time warning gener-
ated by Tapir, we may need to refine the relevant pattern,
in a fashion similar to the CEGAR loop [5]. However, this
should be done judiciously to avoid malicious attempts to
corrupt usage patterns.

Further, Tapir should allow evolving its API usage pat-
terns based on empirical evidence. We envision keeping
track of warnings for patterns that are ignored by devel-
opers too often, allowing us to reevaluate the usefulness
of each pattern. Tapir could then attribute a severity score
based on empirical data that integrates developer reac-
tions to analysis feedback, similar to the Google Tricorder
approach [25].

6.3. Compile Time
At compilation time we aim to determine whether the

client code respects the mined API patterns without need-
ing to execute it. We envisage doing that by statically an-
alyzing client code to generate ”pseudo-traces”. Given a
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Source code Filtering and indexation Control Flow Graph Pseudo Traces 

Figure 7: Pseudo-traces derivation from source code process

Listing 2: keepCheck() preprocessed: the method instructions
are filtered and indexed to focus on control flow and SQLite API

if

try {

p48

p69

p50

} catch

p38

if

try {

p65

p30

while (p33) {

if

p79

p39

p41

} catch

Listing 3: tV : a pseudo trace for method keepCheck() violating
PRE i.e. support = 4 and potential support = 5

p48;p69;p50;p38;p65

Listing 4: tNR: a pseudo trace for method keepCheck() non rele-
vant to PRE i.e. support = 0 and potential support = 0

p48;p50;p38;p65;p30;p33;p79;p39;p41

Listing 5: tS: a pseudo trace for method keepCheck() satisfying
PRE i.e. support = 7 and potential support = 7

p48;p50;p38;p65;p30;p33;p79;p39;p41

pseudo-trace t and a pattern p, Tapir will use the approach
outlined in Section 6.2, to generate appropriate warnings
to the developer. These will be communicated along with
other compile time messages.

To generate pseudo-traces, we plan to use the approach
outlined in Figure 7. Specifically, Tapir will follow these
steps:

a) filter the client code, keeping only control flow in-
structions (conditionals, switch statements, loops,
try-catch blocks) and API calls. API calls are indexed
to ease the process.

b) use the resulting code to construct a control flow
graph (CFG) G.

c) compute the set of mutually independent paths on G.
We call these pseudo-traces.

Implementation of this technique is ongoing work.
For example, in the case of the keepCheck() code shown

in Listing 1, the corresponding CFG is shown in Figure 8.
From this graph, the extracted pseudo-traces are tV, tNR, tS,
shown in respectively Listings 3, 4, and 5. The result of
checking the pattern PRE on tNR is (0, 0). This means that
tNR is not a relevant trace and no further action is needed.
For tS, the result is (7, 7), indicating that tS satisfies PRE. A
message can be generated if the developer has indicated
that she wants to be informed about patterns that are
used and satisfied. Finally, for tV, the result is (4, 5). Tapir
will thus raise a warning to the developer indicating the
existence of potential misuse of PRE.

This approach is not immune to producing false pos-
itives and false negatives. Consider a case where some
structural paths may be non-executed due to mutual ex-
clusion control flow branches. Pseudo-traces will then
contain unfeasible paths. We envision improving Tapir
to reduce false positive and negatives by using block
graph [13] and performing dead code detection [1].

Another limitation of Tapir is that it does not analyse
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Figure 8: Control Flow Graph representing the method
keepCheck()

interprocedural API usages. For instance, consider the
case where Line 35 (c.close()) of Listing 1 (i.e. call p41) is
replaced by a call to a helper method. The helper method
contains the API call (p41), that, if inlined in keepCheck(),
would result in PRE being satisfied. However, the filtering
step of Tapir removes it altogether, not recognizing that it
constitutes indirect API usage. More generally, this prob-
lem of false negatives occurs when API usage is scattered
across different client methods. This can be addressed by
more sophisticated interprocedural static analysis [12].

6.4. Coding Time

Software developers routinely make use of functional-
ities provided by modern IDEs, such as code completion
and incremental compilation. In the previous section, we
described how Tapir could use CFGs to generate feedback
for developers at compile time. However, during the time
that a developer is in the process of coding, the code is
by definition incomplete. During this stage, Tapir pro-
vides feedback to the developer in two contexts: (a) as
IDE warnings generated during incremental compilation,
and (b) as code completion recommendations.

Take for example the case where a developer wants to
access a database for writing. It is required that she use
the Android#SQLite API to create and/or open a database
connection. This is done using the getWritableDatabase()

Listing 6: Example of an insert method

public static void insert(int ID, int val, int ref,

int id, int v1, int v2) {

ContentValues contentValues = new ContentValues();

contentValues.put(ID, id);

contentValues.put(ref, v1);

contentValues.put(val, v2);

SQLiteDatabase db = this.getReadableDatabase();
db.insert(TABLE_REF , null, contentValues);

db.close();

}

Table 11: Variables for Fc

Variable Methods
rd SQLiteOpenHelper#getReadableDatabase
in SQLiteDatabase#insert
up SQLiteDatabase#update

or getReadableDatabase() methods of the SQLiteOpen-
Helper class, as shown in Listing 6.

As stated in the API documentation5 the SQLiteOpen-
Helper#getReadableDatabase() method might return an
object database in read-only mode. In this case, invok-
ing methods that write in a database, such as SQLite-
Database#insert() or SQLiteDatabase#update(), will cause
the program to not function properly. This problematic
case can be expressed in the LTL formula Fc : G(rd →
XF(in|up))

Tapir uses Grapacc, a code completion Eclipse plu-
gin [20], that produces code completion recommen-
dations based on API usage patterns. Grapacc uses
grouMiner [21] to build a database of frequent usages
of APIS in form of groums, a data structure that represents
control and data flow in code fragments. Tapir generates a
Grappac input file to start the Grappac plugin. The plugin
in turn analyzes the code being edited, by internally en-
coding it as an incomplete groum and attempting to return
the most similar pattern. Tapir uses the Grappac output
to generate warnings of potentially problematic API us-
age. In case of multiple pattern violations, Tapir ranks
them according to relevance, as shown in the illustrative
example in Figure 9.

6.5. Documentation Time

Temporal API usage patterns can be used before the
developer starts writing the client application code, by
translating them into natural language documentation
and comments. For example, in the case of PRE we have
already translated the LTL formula in a natural language
description in Section 6.1. Developers planning to imple-
ment components that use the API calls implicated in PRE,
such as keepCheck() could benefit from such descriptions

5https://developer.android.com/reference/android/

database/sqlite/SQLiteOpenHelper.html
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Figure 9: Tapir warning, integrated with code completion in Eclipse.

of the patterns in natural language. We envision using
Tapir to generate such documentation.

In Section 2, we described the three classes of API us-
age patterns, classified by “usefulness”: H , containing
patterns that can be understood by humans with reason-
able cognitive effort; M, containing patterns that, while
not humanly comprehensible, can still be efficiently lever-
aged by automated techniques; andI, containing patterns
that cannot be practically used either by humans or auto-
mated techniques. Patterns in I are by definition outside
the scope of our interest here.

Much work has been done in translating natural lan-
guage specifications into LTL formulas (see, for example
[19, 7]). However, to the best of our knowledge, little work
addressed the translation of LTL formulas into natural
language, beyond a set of well understood patterns [6].
Direct translation of LTL formulas may lead to verbose
and unintelligible text. As a first step towards this ap-
proach, Tapir generates graphical representations of LTL
formulas as Groums [21] to help developers understand
the meaning of the patterns.

For the validation in Section 5, we manually translated
for patterns, and the resulting text is in general more
abstract and concise than the combination of individual
meanings of the involved logical and temporal operators.
The strategy we are working on to automate such a trans-
lation is based on the use of examples. First, we create a
corpus of formulas, of different shapes and complexities,
with their corresponding natural language texts. Then,
this corpus is used in an example-based machine transla-
tion framework [32] to convert mined API temporal pat-
terns into documentation.

Generating documentation for patterns inM is by defi-
nition much harder. A potential approach might be to try
to generate only some characteristic traces and describe
them along with their relationships. More imaginative so-
lutions could include interactive training tools, that would
allow developers to understand the patterns from direct

experience.

7. Discussion and conclusion

We have proposed a genetic-programming approach to
recover API temporal constraints from execution traces
of client programs using the API. Our approach explores
the space of LTL expressions, representing the candidate
patterns, that can be defined on the API public methods.
The exploration is guided by the applicability of candidate
patterns to the trace samples. Unlike most of the existing
approaches, ours does not search for specific pattern tem-
plates. We evaluated our approach on eight libraries. Our
results show that we are able to recover a wide range of
usage patterns in terms of size, complexity, and variety of
temporal and logical operators. It also demonstrated that
the recovered patterns are generalizable to clients not con-
sidered in the recovery process. Additionally, we assessed
the meaningfulness of the recovered patterns. The major-
ity of patterns in the analyzed sample were considered as
meaningful with respect to the API functionalities. We be-
lieve our work is an important stepping stone towards the
assistance of developers in safely using the multiple APIs
necessary to their development tasks. Indeed, the recov-
ered patterns, when they are humanly understandable,
can be used to document the API. When these patterns
are too complex, they can still be useful to automatically
recommend usage scenarios or detect suspect and incor-
rect situations as outlined in the proposed agenda for in-
tegrating temporal patterns into development activities.

Although the obtained results are very encouraging,
there is room for improvement. First, the approach can
be improved to avoid producing candidate patterns that
are too trivial, especially when the negation operator is
used. Another possible improvement concerns the fit-
ness functions. Currently, we use a single function that
combines the support and the confidence with threshold
values. Defining accurate values for these thresholds is
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not obvious. An alternative option to explore is to use a
multi-objective search. From the evaluation perspective, it
is necessary to have a larger study on the readability and
the usefulness of the recovered patterns. Such a study
should involve actual developers using a set of APIs.
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