Learning Model-Driven Engineering Tasks from Examples **Representativeness and Generalizability**

Édouard Batot

DIRO, Université de Montréal batotedo@iro.umontreal.ca

A generic framework to study the inductive capacity of model-sets in MDE

Specific Knowledge

Difficulty to write automated tasks

• Computer expert

- ✓ Ability to write automated tasks
- Limited domain knowledge

Well Formedness

Learned Task Accuracy

Empirical

Evaluation

C

0

Representativeness and Generalizability

Quantification of an example set's capacity to support qualified knowledge derivation

Coverage level of input models

Representativeness of example set

Quality of the task learned

Inductive capacity of example set

References and published works

[3] Baki, I. and Sahraoui, H., Multi-step learning and adaptive search for learning complex model transformations from examples. In TOSEM 2016, 25(3):20:1–20:37. [2] Faunes, M., Sahraoui, H., and Boukadoum, M. Genetic-programming approach to learn model transformation rules from examples. In ICMT 2013, pp. 17–32. [1] Batot, E. and Sahraoui, H. A Generic Framework for Model-Set Selection for the Unification of Testing and Learning MDE Tasks, in MoDELS 2016: 374-384, [0] Batot, E. Generating examples for knowledge abstraction in MDE: a multi-objective framework, in SRC@MoDELS 2015, pp. 1–6,

