
1

A Survey-driven Feature Model for Software
Traceability Approaches

Edouard Batot SOM-UOC ebatot@uoc.edu
Sebastien Gerard CEA LIST sebastien.gerard@cea.fr

Jordi Cabot ICREA & UOC jordi.cabot@icrea.cat

Abstract—Traceability is the capability to represent, understand and analyze the relationships between software artefacts. Traceability
is at the core of many software engineering activities. This is a blessing in disguise as traceability research is scattered among various
research subfields which impairs a global view and integration of the different innovations around the recording, identification and
management of traces. This also limits the adoption of traceability solutions in industry.
In this sense, the goal of this paper is to present a characterization of the traceability mechanism as a feature model depicting the
shared and variable elements in any traceability proposal. The features in the model are derived from a survey of papers related to
traceability published in the literature. We believe this feature model is useful to assess and compare different proposals and provide a
common terminology and background that could speed up the creation of new ones on top of them. Beyond the feature model, the
survey we conducted also help us to identify a number of challenges to be solved in order to move traceability forward, especially in a
context where, due to the increasing importance of AI techniques in Software Engineering, traces are more important than ever in
order to be able to reproduce and explain AI decisions.

Index Terms—Software Engineering, Model-Driven Development, Traceability, Feature Model, Explainability

F

1 INTRODUCTION

The need for traceability has always been salient in software
and systems development. Across the years, there has been a
continuous interest in developing techniques to facilitate the repre-
sentation and analysis of traces and links between related artefacts.
It helps explaining their execution and evolution as required in
many software engineering activities and disciplines such as code-
generation, program understanding, software maintenance, and
debugging.

The importance of traceability was first recognized in system
engineering especially related to the development and certification
of critical systems where it is a primary concern. As an example,
traceability is part of any certification mechanism in all com-
mercial software-based aerospace systems as stated in documents
like the RTCA DO-178C (2012) [70, 58]. The consideration of
various levels of abstraction in software development and the
meaning of verification in model-based development paradigm -
which figures abstract representations (models) as the core artefact
for conceptualization - was latter introduced with companion
documents (specifically, DO-331). The automotive industry has
followed the same path with the construction of an international
standard for functional safety [46].

Despite these important evidences on the need for explicit (and
automated) tracing abilities in software development, traceability
is not widely adopted, even less automated, and there is little
feedback from its concrete use in industry [69] beyond the critical
domains above.

There is a lack of global techniques to ease the manipulation
of traces and automate tracing processes. Thereby, traceability in
the industry, when required, ends up being mostly a manual pro-
cess [55]. Moreover, with no standard definition or representation
of traces, it is difficult to bridge the gaps between the different par-

tial traceability solutions existing in research subfields[6, 96, 95].
Even the software engineering body of knowledge do not seem
to properly consider the key relevance of traceability in software
engineering as it only mentions traceability once [16].

All this in a context where artificial intelligence techniques are
being integrated in development processes, raising the need for
more powerful reproducibility and explainability concerns, both
requiring the assistance of traceability mechanisms.

This paper aims to provide a comprehensive perspective on the
state of the art of traceability techniques in software development
and their limitations with the short-term goal of facilitating the
evaluation and comparison of current solutions. And with the
mid-term goal of accelerating the development of new traceability
solutions that could benefit from the existing ones thanks to our
new conceptualization in the form of a feature model describing
the potential dimensions and concerns a traceability solution may
wish to consider. We do not create the feature model or just based
on our (partial) knowledge and expertise in the domain. Instead,
we ground our classification with a survey of the published
literature in this field. According to this survey, we group the
traceability features in three main dimensions: trace definition,
trace identification and trace management, with the corresponding
feature hierarchies for each of them.

The paper is organized as follows. After a brief introduction,
we discuss in Section 2 how our work compares to other meta
studies and characterizations of traceability research. We then in-
troduce some basic traceability terminology in Section 3. Section 4
describes how we conducted our literature review and Section 5
presents a detailed feature model derived from the survey of the
retrieved works. This analysis also helps us to propose a number
of discussion points and open challenges in Section 6 before
concluding this work.

2

2 STATE OF THE ART

Traceability was proposed, from the very beginning of software
engineering, as a measure to ensure that a system being developed
actually reflects its design. Already in the original NATO working
conference, quality projects were praised for making "the system
that they are designing contain explicit traces of the design
process" [75]. From that point on, traceability has been studied
from a myriad of perspectives, dimensions and applications.

As such, it is no surprise that there have been other previous
attempts to characterize and summarize the state of the art in the
traceability field. In what follows, we compare our own proposal
with previous surveys of traceability papers and related work
aiming to systematize what we know about traceability. As we
will see, ours stands out by combining both types of works, i.e.
by proposing a traceability systematic description grounded on a
thorough analysis of traceability proposals in the literature, instead
of just offering a more descriptive survey or an individual and/or
partial traceability model.

Publications around traceability started to grow in the 90’s
with a seminal work from Gotel et al. [35] with, probably, the first
systematic analysis of the traceability problem. Since then, many
researchers attempted to draft general traceability frameworks and
methods. For instance, in 2007, Cleland Huang et al. described
best practices that remain essential today. They distinguish three
categories of concern: the purpose and constraints of tracing in
a specific environment; the creation of traceable artefacts with a
project glossary, quality requirements and rich, organized content;
and the automation of tracing processes. As we will see in the next
section, these concerns are an important part of the feature model.

With the proliferation of traceability purposes, some authors
explicitly asked for better sharing of experiences in using trace-
ability [36] and evaluating the solutions existing so far [85].
Surveys and literature reviews trying to group and compare
them began to appear as well, though most of them focused
on specific subareas such as requirement engineering [35, 15],
model-driven development [32, 95, 64, 80, 59], software product
lines [90, 4, 90], benchmarking [85], and information retrieval
[23, 13, 39]. To complement this more scientific surveys, Konigs
et al. survey industrial application of traceability approaches [52],
showing its limited penetration. Neumuller et al. show that the
adoption is worse in small businesses where traceability is even
less automated [62]. Finally, Charalampidou et al. review trace-
ability approaches in the prism of their empirical evaluation. Au-
thors add to the conclusion of other surveys that "although many
studies include some empirical validation", there is still much to
be done with respect to validation and reproducibility [20].

These surveys point to some shared concerns, like the crucial
lack of a common terminology and that existing traceability
solutions struggle to achieve satisfactory cost/benefit ratios, in
part because of the nonexistence of such common traceability
knowledge base that facilitates the reusability and improvement of
available traceability tools and techniques. This is aggravated by
the fact that, as pointed out above, many of the proposals belong to
different research subfields, which limits the discovery and aware-
ness of alternative solutions. For instance, Winkler et al. point out
that researchers in requirement engineering and in model-based
development do not communicate enough among each others [95].
This lack of communication and shared understanding is one of
the open challenges in the traceability domain [22, 6].

To solve this issue several works aim at proposing specific

traceability models. Unfortunately, many investigations suffer a
lack of generalizability due the specific nature of the problem
being solved (e.g., certification conformity [51], model transfor-
mation coevolution [38]), or the specific nature of the solution
considered (e.g., w.r.t. its language: SysML [61], w.r.t. its engi-
neering field: SPL [4]).

As an example, the automatic identification of trace links is
one of the most studied features. There are plenty of proposals
to achieve this but as they are evaluated using different datasets
and configurations, they cannot be directly compared [83, 39, 13].
Another example would be model-driven engineering, where the
proposal and usage of traceability languages and models shoud
be more “natural”. Nevertheless, not even there we find a unified
traceability representation model: Mustafa et al. argue that "the
main issues in traceability nowadays are building traceability mod-
els that can accommodate the capturing of traceability information
and providing common semantics for trace links" [59]. Proposals
tend to focus also on a specific model-driven engineering problem:
the co-evolution of models and transformations [3, 79, 65, 29]
instead of aiming for more general solutions.

As a result of this confusing situation, a few authors asked
for more standardized practices. These proposals are however
restricted to specific application or engineering domains and miss
their general target. Debiasi et al. propose to build a common
body of knowledge on traceability. They refer to requirements
traceability and focus on the organizational challenges of the
implementation of traceability approaches [24]. Heisig et al. [42]
present Capra, an Ecore implementation of a framework for the
traceability of software product lines.

We agree with these authors that this lack of de juro / de
facto traceability standard is hampering the benefits of current
traceability solutions and hindering evolution in the field. This
paper pretends to cover this gap by proposing a traceability charac-
terization that stems from the analysis of all existing proposals. We
believe this model can be useful to researchers trying to improve
traceability techniques in any subfield and to practitioners looking
for a way to compare and choose the traceability solution that best
suits their needs.

3 TOWARDS A COMMON TRACEABLILITY TERMI-
NOLOGY

A clear conclusion of the previous section is the lack of a common
conceptualization for traceability that helps evaluating, comparing
and reusing traceability solutions over a variety of scenarios and
application domains. Thus, the incoherency problem still arises
in traceability research [94]. Even if an individual article makes
a claim that withstood rigorous testing and statistical analysis,
it might not use the same words as an adjacent article, or it
would use the same words but intend different meanings. For
instance, the term traceability is used to designate both the ability
to trace system elements, and the traceability links (the relations)
themselves [15, 6].

Therefore, before proposing our global traceability model, we
first recap the different usages of the key traceability concepts and
propose a unified definition that we will use in the rest of the
paper.

3.1 Traceability components
Traceability research refers mainly to a definition from Gotel et
al. that defines traceability as the ability to describe and follow

3

the life-cycle of a requirement, from its initial specification to the
design and code elements of the system implementing it [35]. This
is still the most popular meaning for traceability [15, 10] even
if modeling approaches try to generalize this notion by seeing
traceability as a valuable tool to link all types of linking artefacts
at either the same or different levels of abstraction [54, 89].

Regardless the specific interpretation of traceability we ob-
serve a division of knowledge into four main areas:

• Strategizing traceability. It involves defining the explicit
traceability purpose for the project at hand and how to best
reach that goal.

• Trace and artefact representation. It covers the design /
adaptation of a language to be used to define the traces and
decisions regarding its syntax, expressiveness, variability,
integrations, etc. For instance, this can be done by means
of creating a full traceability domain-specific language.

• Trace link identification. It designates the identification
of traces in a software system, be it a post-requirement
assisted elicitation, a live record during a system execution
or an automatic AI-based inference process. This latter ap-
proach is the clear trend right now to help the identification
of links between heterogeneous artefacts.

• Trace management. It refers to the ways to use and
maintain the traces. This includes tool support for the
persistence, retrieval, and analysis of traces.

The first area is a high-level concern that influences the
requirements on the other three to cover the specific needs of a
project. These three will therefore be used to structure our feature
model later on. Note that the representation component should be
part of any traceability solution as it is the base component to be
able to, at the very least, express traceability information.

3.2 Traceability glossary
We propose some general definitions for the most frequently
encountered traceability terms while searching for and studying
solutions for traceability in any of the above categories. These
definitions, partly borrowed from past literature [36], aim to
encompass the different uses and dimensions of traceability de-
picted above. Our set of terms is not exhaustive but provide
a common core generic enough to be then adapted to specific
scenarios. This is also why we try to be precise with the definitions
while also offering room for slightly different (but compatible)
interpretations.

– Traceability is the ability to trace different artefacts of a
system (of systems). It is defined in the IEEE Standard
Glossary of Software Engineering Terminology [45] as

1) The degree to which a relationship can be es-
tablished between two or more products of the
development process, especially products having a
predecessor–successor or master–subordinate rela-
tionship to one another. [...]

2) The degree to which each element in a software
development product establishes its reason for
existing.

Gotel et al. define traceability as "requirements traceability
[which] refers to the ability to describe and follow the
life of a requirement, in both a forwards and backwards
direction" [35]. Aizenbud-Reshef and colleagues extend

the Gotel’s definition of traceability and define MDE trace-
ability as "any relationship that exists between artifacts
involved in the software engineering life cycle" [2].

– End-to-end traceability refers to a complete and ubiq-
uitous traceability application, comprising a set of traces
that extend throughout the entire life of a development
project, from the requirements phase to, test, exploitation
and retirement phases. "End-to-end traceability weaves
artifacts together in tandem with the various phases of the
life cycle" [8].

– A trace is a path from one artefact to another. A trace is
composed of atomic links that directly relate artefacts with
each others. The representation of traces, their data struc-
ture and behaviour, is defined in a traceability grammar or
metamodel [26] depending on how the trace language is
defined. In any case, the language definition specifies the
concepts and relationships available to define traces. As
discussed before, no standard language has emerged yet.

– An artefact can be any element of a system - e.g., un-
structured documentation, source code, design diagrams,
test cases and suites... The nature of artefacts follows
two main dimensions: the life cycle phase they belong to
(e.g., specification, design, implementation, test), and their
type (e.g., unstructured natural language, grammar-based
code, model-based artefact). The granularity of artefacts
is the level to which artefacts can be decomposed into
sub parts. We call a fragment, the resulting product of
the decomposition of an artefact. A fragment can be itself
broken down into smaller parts (or sub-fragments), and so
forth and so on.

– A link is a direct relationship between two artefacts.
Links can be typed to better support the heterogeneous
nature of traceability applications. The type of the link
can help express the rationale behind the relationship -
it informs not only how artefacts are linked but also
why [55]. Typing is a primary concern in conceptual
modeling in general [63]. This link definition is consistent
with the concept of link in popular modeling languages
like UML or SysML, where link is a specialization of the
concept of Dependence (which is itself a specialization of
DirectedRelationship) which is used to explicitly model a
traceability relation between two sets of elements. We add
the need of additional typing to this relationship.
Links can be explicit or implicit. An implicit link show
artefacts bondage at a syntactic or semantic level without
the need for an explicit link to be part of the model (e.g.,
a binary class and its respective source code artefact are
implicitly "linked" to each other) [64].

– A referee is the (human) actor accountable for an artefact,
or a link.

– Application and engineering traceability domains: the
specific nature of a traceability project follows two dimen-
sions: i) the domain of the target - that is, the application
domain, and ii) the domain of solution considered - the
engineering domain.

– Trace integrity is the degree of reliability that bares a
trace. It is an indirect measure that includes, for example,
both the age of a trace, the volatility of artefacts targeted
by the trace, and the automation level of tracing features.
This indication is supported by evidences that can be
quantitative or qualitative. For example, how long (how

4

many versions ago) has the trace been identified in the
system? Or, has the trace been identified manually or auto-
matically? Is there an automated co-evolution mechanism
between traces and targeted artefacts? What is the level of
experience of the trustee who identified it? The volatility
of source and target artefacts are also factors that may
influence the relevance and accuracy of a trace.

– Pre-requirement and post-requirement traceability refer
to, respectively, traces identified during specifications elic-
itation and during the implementation (design and code)
step of a specification [35]. The IEEE Guide for Soft-
ware Requirements Specifications mentions forward and
backward traceability, referring to the ability to follow
traceability links from a source to a specific artefact, or the
opposite from the artefact to its source respectively [44]
but, technically, the direction of traceability link (from
source to target, or from target to source) does not make a
difference.

– Vertical traceability refers to the linkage between arte-
facts at different levels of abstraction (e.g., derives, imple-
ments, inherits) whereas horizontal traceability refers to
artefacts at the same level (e.g., uses, depends on).

– Time related traceability goes along two dimensions:
the evolution of (a group of) elements through successive
development tasks, or the evolution of artefact properties
during an execution of the system.

Some of these concepts will explicitly appear in our feature
traceability model while others act as requirements and usages that
should be supported/facilitated by the features in the model and
taken into account when choosing a specific traceability solution
depending on how well that solution covers the specific features
of interest for the project at hand.

4 TRACEABILITY SURVEY METHOD

In this section we depict the methodology we followed to collect
papers proposing traceability solutions, including at the very least
the core representation component (see previous section). The
analysis of these papers will give rise to the feature model we
will present next.

The selection process combined the manual selection of a few
approaches based on our own experience working in this field and
on the works covered by other meta-studies [36, 6, 22, 39] together
with a systematic literature search by mining bibliographic data
sources following the literature review process established by
Kitchenham and Charters [49]. Fig. 1 depicts the three main steps
of the process.

4.1 Data source and search strategy
We used DBLP (2020-07-01 [1]) as our core electronic database
to search for primary studies on traceability. To avoid missing
possibly relevant approaches, we decided not to put a specific
period constraint for the search, but we limited the scope of the
search to paper of five pages or more to avoid opinion and vision
papers, posters, tool demos and other types of short papers to
reduce the number of results while maximizing their quality.

Based on the topic of this survey, we defined the terms of the
search query according to the recommendations of Kitchenham
and Charters [49]. We apply the query on the title and abstract
of potential relevant publications. As using very generic terms

like “trace” or “traceability” returned thousands of results, we
decided to combine in the search query trace-related keywords
with language-related ones since any traceability proposal should
discuss how traces need to be represented. As many traceability
languages are model-based, as part of the language variations we
included model, modeling and other core MDE concepts. This
brought down the results to 203 papers.

Here is the exact query we applied:
.*(([Tt]rac(eability|ing))|([Tt]race[rs])).*
AND .*(([Mm]odel[-])(([Dd]riven)|([Bb]ased))|
MD[DAE]|Model[l]ing|[Tt]ransformation|
DSL|[Ll]anguage).*

4.2 Pruning

In what follows we describe our inclusion and exclusion criteria.
We further explain how we applied these criteria on the previous
set of papers.

Inclusion criteria

1) the paper is a technical contribution
2) the paper is about tracing in software engineering
3) traceability is the main concern of the paper

Exclusion criteria

1) the paper is not a primary study
2) the paper is not a white paper

Before we applied these criteria on the potential papers fetched
by our query, we removed automatically papers of less than 5
pages long. We also automatically extracted papers whose titles
mentioned "biology", "education", "kinetics", "logistics", "physi-
ology", "physics", "neuroscience", "agriculture", and "food" which
appeared each in a couple of results. We manually examined the
183 papers left and excluded 40 papers that did not fulfilled the
criteria or were duplicates.

4.3 Snowballing

At the end of the previous steps, we double-checked that we did
not miss any potentially relevant approach due to a number of
reasons, e.g., some workshop papers are only indexed by ACM or
papers that may be using different synonyms to traceability like
“composition” or “extension”.

Finally, we added papers we were aware of (if not already
in the resultset) and a few more we found by snowballing on
the selected papers references. They amount to a total of 10
papers. We also manually added the papers of a specific event on
traceability, the ECMFA workshop on traceability (i.e., ECMFA-
TW).

This lead to a final result of 159 papers. Among them, there are
41 journal articles, 82 in conference proceedings, and 36 workshop
reports (see Table 1). Fig. 2 shows the chronological distribution
of the selected publications.

Publication type
Journal 41
Conference 82
Workshop 36

TABLE 1: Publication types of the selected papers.

5

DBLP

dataset

Traceability

&

Modelling

Non Software

engineering

> 7 millions entries 203 papers 159 papers

Inclusion with

keyword search Pruning Snowballing

Manual

addition

143 papers

Fig. 1: Survey Process.

0 0 2 2 1 1

5

10

3

8

22

6

16
17

13

8
7

8

5

1 0

Fig. 2: Papers selected related to traceability and modeling.

4.4 Threats to validity in the selection process

We acknowledge limitations in the execution of our survey
method. First, we only used DBLP as a source database. Yet, it
is recognized as a representative electronic database for scientific
publications on software engineering and already contains more
than five million publications from more than two million authors.
Setting the limit based on the number of pages alone to elude
short papers is another threat to validity. Yet, it is a reproducible
practice that limits the number of papers to analyse and thus helps
concentrate on the topic rather than the engineering of the survey.
Finally, the vocabulary related to traceability is scattered among
various fields of application with their respective nuances. We
mitigate the risk of missing papers by manually adding papers that
were not using variations of this term but were still referenced by
papers that did. Still, focusing on traceability as a key term was
also a conscious decision as we wanted to characterize the works
in this field, focusing on those papers that define themselves as
part of it.

5 A FEATURE MODEL TO CHARACTERIZE SOFT-
WARE TRACEABILITY

This section presents our conceptualization of traceability by
means of a feature model describing the traceability features and
dimensions found in the analysis of the literature conducted in the
previous section. Our feature model groups them by similarity and
provides additional descriptions on the most important aspects of
each one, e.g., different existing alternative implementation of the
same feature and/or the most/the least studied ones in each group.

Next subsections provide some background on feature mod-
eling and then zoom in each of the three main dimensions of
traceability: trace representation, trace identification, and trace
management. These dimensions are depicted in Fig. 3, Fig. 4,
and Fig. 5, respectively.

5.1 Introduction to feature modelling

A feature model leverages features as the abstraction mechanism
to reason about product variability. It is a hierarchically arranged
set of features, where relationships between a parent feature and
its child features may be categorized as: and – all sub-features
must be selected, alternative - only one subfeature can be selected,
inclusive or – one or more can be selected, mandatory - features
that are required, and optional - features that are optional [48].
Each feature represents an increment in product functionality.

Feature modeling is a technique that has been intensively used
for documenting the points of variability in a software product
line, how the points of variability constraint one another, and what
constitutes a complete configuration of the system. But beyond
product lines, feature model are also more and more used to shed
light on complex domains by representing the core concerns and
variation points in a complex ecosystems (e.g., [17]), as we do in
this paper.

5.2 Trace definition and representation

All approaches must discuss their representation of trace artefacts
even if they can differ already based on the type of traces they con-
sider and their foreseen application. Representations are so diverse
that our survey selected more than 80 papers mentioning their
own distinct definitions with 20 metamodels effectively depicted
in those papers. Some researchers present generic graph-based
representations [81, 37] while others focus on representations
much more specific to a concrete application like this metamodel
for change impact analysis [34] or multi-model consistency [88].

Fig. 3 shows the hierarchy of features related to the definition
and the representation of trace artefacts. A peculiar focus is put
on the typing of the traces relationships. Typing relationships is
important to add semantics to the trace so that the engineer can
know not only what are the linked artefacts but also why they
are linked. As such, it facilitates the application of traceability
solutions to specific domains. We also detail the genericity of the
language, the artefacts covered by the traceability proposal and the
possibility to annotate traces with quality properties.

We would like to remark the contribution of model-based
approaches for traceability in this subsection. The use of MDE
tooling such as ATL [78, 47], or the Eclipse Modeling Framework
(EMF) allows the automated generation of traceability information
as a side effect of executing operations [32, 95]. The modeling
community has proposed metamodels for end-to-end traceabil-
ity [42, 40], as well as metamodels specific to engineering domain
such as model transformation [47, 4, 91, 12] or software product
line [47, 91]. Paige et al. call for more flexible modeling where
models of different formats are associated to each others’ with
annotations that allow automated bond or dependency inference
between both application and engineering domains [83, 66].

6

Trace representation

Generic

Specific to traceability

Third-party services

Artefacts targeted

Granularity Pre-defined

Composable

Cardinality
Multiple source and target

Single source

Nature

Development process

Artefact type

#

##

Unstructured document

Grammar-based artefact

Executable

Model-based artefact

Artefact type##

Customizable

Development process
Design

Implementation

Test

Configuration

Specification
Requirement

Certification
#

Trace quality

Relationship types

Generic

Domain specific

CustomizableRelationships

Single (pair)

Language

Temporal characteristics

Precision & Recall

Co-evolution

Change impact analysis

Distance evaluation

Relevance

Coverage

Integrity Automation level

Versatility

User Feedback

Legend
optional

alternative
(or)

alternative
(xor)

mandatory

Fig. 3: Features related to the representation of a trace.

5.2.1 Artefacts targeted

In relation to the artefacts targeted by traceability purposes we
distinguish between the nature of the artefact and its granularity
as both dimensions are important and used in the literature.

For the nature aspect, on the one hand, investigations differ on
the development phase they target. Linking requirement specifica-
tions to design and code level predominate in the literature with
more than 50% of the papers in the survey addressing requirement
traceability. Other phases such as test and verification are targeted
as well but in a lesser proportion. On the other hand, the type
of the artefacts is important to deduce the level of potential
generalization to other phases of the software lifecycle. Papers
focus on four different types: unstructured document, structured
as grammar-, and model-based artefacts, and binaries.

With regard to the granularity of the artefacts targeted, i.e.,
their level of decomposition, some approaches go for a customiz-
able granularity to adapt to artefact hierarchies while others focus
on specific types of artefacts (e.g., to concentrate their work on
specific optimizations of trace identification).

5.2.2 Language
Languages specific to traceability provide the ability to represent
trace artefacts with increased relevance and accuracy. Yet, they
often suffer the limitation to be built ad hoc and lack a signif-
icant power of reusability other domains and risk of ending up
reinventing the wheel. Among these domain-specific languages
for traceability, some authors attempt a generic definition of
traceability [42, 9] while others provide a language specific to
a single domain, e.g., traceability for software product lines [4].

We found few studies interested in the use of general-purpose
software language for traceability - even though this would be
appealing to industrial partners interested in instrumenting their
legacy systems code with traceability information to facilitate
future evolutions or migrations [61]. Another type of general
languages for traceabiity could involve representing traces in
spreadsheets, text files, or databases. This shows better learning
curves than using a domain specific language at the cost of a
cognitive gap between software engineers and domain experts. As
an unfortunate consequence, "the maintenance costs turns out to
grow accordingly [to the usability of generic representations] and
team members fail to keep the trace artefacts up-to-date" [21].

A potential sweet spot could be to “plug” traceability concerns

7

on top of other languages like SysML [61] to benefit from an
existing language structure while keeping most of the benefits of
using a DSL.

5.2.3 Relationship types

As many authors have demonstrated, offering the ability to the user
to define personalized types of relations between the artefacts of a
system fosters the comprehensibility of the traces produced [63].
We distinguish between approaches offering predefined types,
most often relating to the field of software engineering (imple-
ments, inherits, uses, executes ...) and approaches allowing custom
typing.

Obviously a fixed typing facilitates the analysis of the traces
as the potential set of semantics and interpretations are fixed
while offering domain-specific types increases the usability and
comprehensibility of the approach. As an example, SysML v2 is
offering a more powerful mechanism to define links between arte-
facts. Compared to the previous SysML version (where we had a
sole dependency-like mechanism) we now have the “Connection”
concept that is customizable and that could be regarded as a good
equivalent for our trace link concept.

The literature shows also a distinction between approaches
considering relationships with multiple sources and targets and
relationships allowing only a single source.

5.2.4 Trace quality

In most of the papers we studied, quality aspects were barely
mentioned. It seems quality of the generated traces is not a major
concern, or at least storing and annotating the traces with such
information is not.

Yet, a few studies mention coverage and integrity. The cover-
age of a set of execution traces is used in approaches for software
testing [33]. Coverage is also used by Rath et al. who address
the problem of missing links between commits and issues with
a classifier they train on textual commit information to identify
missing links between issues and commits (i.e., a lack in the
coverage indicates such missing links) [76]. Integrity of traces
is addressed in work on model transformation where co-evolution
figures an automatic verification of their coherence with other (ver-
satile) software artefacts [88, 86]. The co-evolution of traces im-
plies measuring distances between artefacts (syntactic, cognitive,
geographic, cultural...) [11]. It also refers to the analysis of the
changes of the system that impact traceability artefacts [34, 92].
In our survey, nine papers address artefacts co-evolution and 17
tackle model transformation limitations. These latter are a valuable
tool to automate co-evolution tasks. In the many studies focusing
on the optimization of link identification, the quality of the results
is mainly evaluated with precision and recall measurements. Few
researchers include a user feedback [13].

A few publications relate the quality of their work to the
computation of aggregated values, evaluated against company
(or project specific) thresholds [19]. They make use of rules to
automate the computation of customizable analyses and show that
query, metric and rules are a powerful combination to measure the
productivity of new initiatives.

5.3 Trace identification

Fig. 4 shows the hierarchy of features related to the identification
of traces with four main possible categories: the manual elicitation

of traces, their live record during execution and evolution, rule-
based alternatives to assist the user with automation potential, and
AI-augmented identification with domain contextualization.

5.3.1 Manual elicitation
Manual elicitation makes possible to create traces in an ad hoc
manner. As an example, one of our industrial partner chose to
hire a developer to elicit trace links necessary for a certification
commitment. This was chosen rather than a (semi-)automated
approach as they were not convinced the effort of augmenting
an existing tool would pay off for that specific project.

5.3.2 Recording instrumentation
Teams can instrument the live record of traces during the execution
and the evolution of software artefacts. This way traces recording
the system changes are a side-effect of those same changes. There
are initiatives to instrument existing languages such as ATL with
rich log generation [78, 53], while others consider trace record an
aspect that can be weaved with current existing languages [72, 78].
Ziegenhagen et al. mix execution traces with metadatas [98],
and use developer interaction records [97] to enrich existing
traceability artefact.

Model transformations are considered the hearth and soul
of software modeling and, consequently, numerous studies at-
tempt to enrich trace generation during transformation execu-
tion [91, 77, 53]. This ubiquitous integration (see Fig. 5, bottom
branch) allows a semantically rich tracing of target and source
artefacts [65]. Unfortunately, this option can only be applied when
we are building the system, not when the system is already in
place.

5.3.3 Arbitrary rules
Once a system is in place, teams can identify rules that help
retrieve and maintain traceability relations [60, 87]. Antoniol et al.
use the mnemonics for identifiers to establish trace identification
rules [5]. At the model level, Grammel et al. use a graph-
based model matching technique to exploit metamodel matching
techniques for the generation of trace links for arbitrary source
and target models [37], and Saada et al. recover execution traces
of model transformation using genetic algorithms [77].

5.3.4 Domain contextualisation
Borillo et al. published an article on the use of information
retrieval techniques for linguistics applied to spatial software
engineering [14]. This precursor work opened the box for AI-
augmented traceability where machine learning algorithms help
extract knowledge specific to the application domain. This is
specially useful when the source (or target) of the trace link is
an unstructured document or when such document is key to infer
traces among other artefacts.

Researchers first extracted word vectors from natural language.
Vectors intend to take account of the neighbouring words a term
may relate to in the application domain [23]. This effort made
the identification of bonds between requirement specifications
and other artefacts possible with a gradually improving precision.
Since then, many other information retrieval techniques for nat-
ural language processing were applied with success [7]. Studies
on domain contextualization are separated into three subgroups
according to the type of tools used (algebraic information retrieval
models, statistical language models, and neural networks). For
example, Florez et al. derive fine grained requirement to source

8

Trace identification

Statistical language models

Neural networks

Algebraic IR models

Parameter manipulation

Vector space

LSI

LSTM

Topic labeling

LDA

Tree representation

Domain contextualisation

Arbitrary rules
Model-matching

Genetic derivation

Manual elicitation

Execution log

Dynamic tracing
Live record

Co-evolution

Continuous learning

Mnemonics

Fig. 4: Features related to the identification of trace links

code links [31], Rath et al. complete missing links between
commits and issues [76], Marcus et al. identify links between
documentation and source code [57]. An interesting publication
from Poshyvanyk et al. shows that mixing expertise both in
information retrieval techniques and engineering domains gives
far better results than when taken separately [73].

Today, domain contextualization by means of machine learn-
ing for topic modeling, word embedding, and more generally
knowledge extraction from unorganized text documents is the
most popular traceability feature [39, 96]. We found 22 approaches
dedicated to this topic alone in our survey.

Teams are also using genetic algorithms here, not to recover
traces themselves but to cope with the variety of algorithms and
parameters these approaches use [56, 67], and structural infor-
mation to foster methodologies interweaving [68]. Unfortunately,
a common critique rose against these positive results. Too many
teams compete with each others to accomplish a better precision
and recall when there is no standard to the effective quantifica-
tion of traces artefacts into such variables. Too few attempt at
qualifying the overall relation between these measurement and the
effective impact on software development [22].

In that regard, Shin et al. propose guidelines for benchmark-
ing automated traceability techniques. Their evaluation (of 24
approaches) shows that methods of evaluation (when they are
used appropriately) sometimes are not suitable to other application
domains and that the variation in evaluation results across project
is not investigated [85]. This corroborate Borg et al. who, in a
systematic literature mapping on information retrieval approaches
to traceability, notice that there are no empirical evidence that any
IR model outperforms another model consistently [13]. The ability
to continuously improve the learning process is mentioned in the
literature but we found no evidence of its application.

5.4 Trace management

Fig. 5 shows the hierarchy of features related to the management
of trace artefacts. We distinguish between the actual maintenance
of trace artefacts, the evaluation of their integrity, the means
of persistence, and the level of integration in running software
systems.

5.4.1 Trace Maintenance
Trace links may be affected by changes on the artefacts they
are linking to (directly or transitively) and therefore can easily
become obsolete. This gradual decay must be seriously taken into

account to avoid having to re-elicit traces every time they need
to be analyzed. A manual maintenance is not always impossi-
ble but not typically feasible in practice due to the amount of
information such inspections would involve. Co-evolution tech-
niques [60, 27, 74] attempt to tackle the burden to maintain trace
links up-to-date [82, 19].

Beyond being able to manipulate traces, we also need to
offer proper ways to visualize and inspect them [30]. The use
of graphical representations stimulate human perception and the
integration of such technique in traceability frameworks is a useful
feature to augment user awareness [42]. In parallel, allowing a rich
formulation of queries to assist the exploration of existing traces
will help to reduce the amount of information users need to nav-
igate through [19]. More precisely, structured text, in the form of
metamodel instances or XML sheets allows query-based mining of
trace datasets [25]. Interaction wise, hyper-text links is a de facto
standard to browse trace links. Indeed, following links through
successive clicks has become almost natural. Querying depends
on the type of representation of traceability artefacts. SQL-like
languages benefit from a long history of information mining while
dedicated languages offers better legibility. Genetic programming
has also permitted the automation of query formulation [71].

5.4.2 Trace Integrity
To cope with the decay and volatility mentioned above, we need
a way to determine the integrity of existing traces. Work on these
questions, although called out loudly by literature studies, is scarce
in practice [95, 6]. The first option is given with manual annotation
or vetting of trace links to inform about their level of reliability.
Annotations allow a qualitative and quantitative evaluation [18].
This is the case for back-propagation of verification and validation
results between design and requirements [41].

Some approaches enable the definition of invariant rules while
manipulating traces or their targets [19]. If the invariant is vio-
lated, an exception for that trace is automatically generated. For
example, we could define a rule that is violated when a change
occurs in an artefact targeted by a trace if the corresponding link
was identified more than two versions prior to the current version.

5.4.3 Trace persistence
Many different storage alternatives exist for traceability artefacts.
An option is to use SQL-like grammar to store and retrieve traces
with the power of database tooling, or to use XML documents
to represent trace matrix in a transformable format. The industry
uses a lot of informal format and link representations often remain

9

Trace management

Ubiquitous

Specific container

Third party

Persistence

Format

Repository

SQL-like

XML
Security

Validity duration

Evolution

Model

Change history

Integrity measure

Visualization
Graphic

Textual
DSL

XML

Trace maintenance
Dedicated language

SQL-like

Modeling activities

Database

Operations Read-only

Dashboard

Trace Integrity

Link vetting

Automation level

Rule based

Model checking

Automatic

Manual

System integration

Query formulation Genetic exploration

Legend
optional

alternative
(or)

alternative
(xor)

mandatory

Fig. 5: Tool support for traceability management.

implemented in spreadsheets, text files, databases or requirement
management tools. These links deteriorate quickly during a project
as time pressured team members fail to update them. Researchers
aiming at a generalizable approach favour model-based repre-
sentations able to express specifically defined concepts related
to traceability (often in a specific domain of application). The
burden of maintaining traces coherent is eased in model-based
solutions [21]. Elamin et al. propose to implement traceability
artefact in graph based databases to improve software quality [28].

Another concern lies in the recording of trace evolution. The
trace creation should be recorded, with the successive changes that
affect it, for evolution analysis. Integrity measures respective to
evolution events (e.g., creation, modification...) should be recorded
as well to evaluate their evolution during a period of time. Rahimi
et al. ensure the co-evolution of artefacts and traces [74] using a set
of heuristics coupled with refactoring detection and information
retrieval to detect changes scenario between contiguous versions
of software systems.

5.4.4 System integration

Like most of the MDe approaches, Helming et al. use of the same
modeling language for both traceability and system artefacts to
track changes [43]. The conjunct use of EMF and a dedicated
traceability metamodel (both written in Ecore) facilitates the
integration of traceability features including graphical versions to
stimulate human perception and standard analysis of traces in the
native (Ecore) environment of the traced system.

Galvao et al. in their seminal work on traceability and MDE
call for more loosely coupled traceability support that can integrate
external relationship with independent representations (in another,
ideally common language) [32] as also elaborated by Azevedo et
al. [9].

6 DISCUSSION

The feature model is a first step towards the shared understanding
of all dimensions involved in a traceability solution. Ideally, a
company interested in a certain set of such dimensions could
try to create its perfect traceability solution by combining the
top solutions for each dimension. But this is not yet a real
possibility as those solution would be difficult to combine and,
more importantly, several of the features in the feature model do
not really have a great solution yet. This section elaborates on
this discussion by presenting some open challenges in software
traceability research.

Common traceability metamodel. We have counted over
20 different metamodel proposals. Some are solutions to spe-
cific problems the authors present as case studies. And these
metamodels are rarely reused, if ever. This proliferation is a
challenge to make different traceability solutions interoperate.
The research community should agree in a unified proposal that
facilitates the composability of traceability solutions. We believe
Eclipse Capra [42], even though build to address software product
line tracing, could provide a solid foundation for this unified
metamodel as it already comes with good tool support to build
on.

Complete traceability metamodel. Following up on the pre-
vious point, to agree on a core traceability representation should
not be difficult but it would ignore many of the aspects in the
feature model that we believe are key in any non-trivial and
industrial traceability application, such as the quality and temporal
annotation of traces. A core model with an extension mechanism
could be a good compromise here.

Security of trace data. Considering that traceability is a
major aspect in certification and other critical applications, it is
surprising to see very little interest in security concerns related to

10

trace artefacts. We believe security mechanisms (even simple rule-
based access control) for traceability are needed to control who
can modify what trace data, given the implication such changes
can have.

Library of trace types and semantics. We already mentioned
the importance of having a rich set of types for traces to let
engineers express the reasons behind the creation of a given
trace. But at the same time, complete freedom makes reusability
of analysis techniques difficult. We would like to see a rich yet
predefined set of types for traces that could then be imported in
new traceability projects.

Usefulness of identified traces. Managing a large number
of traces is time consuming. As such, we should make sure
every explicit trace is actually useful. So far, algorithms aimed at
automatically identifying traces are compared based on standard
properties like precision and recall. But they should be evaluated
on “usefulness”: are those traces useful for the end-user? or are
just redundant noise?

Verification, validation and testing of traces. Our ample lit-
erature on verification, validation and testing methods for software
engineering should be extended to deal with trace data, especially
from a temporal perspective, where temporality would depend on
pure timestamp values (i.e. how long since the trace was created)
and on evolution lag (i.e. how many times the linked artefacts
have changed since the trace was created). Reasoning on outdated
and potentially incorrect trace data could have strong damaging
impacts on the system as a whole. So far, very few approaches
target these aspects except for the specific problem of coevolu-
tion in model-driven engineering. The ability to justify – with
evidences and uncertainty evaluation – the quality and integrity
of traces is a prerequisite to robust and reliable traceability. And
given the effort required to create traces in the first place, this
is important to instill more confidence to practitioners wondering
whether creating traces is worthwhile.

Traceability as first-class concern in general languages.
Another important step towards the mainstream adoption of trace-
ability in industry is the integration of the common traceability
metamodel in popular modeling languages like UML or SysML,
in the form of a profile (to be able to directly reuse existing
modeling tools available for those languages) or new packages
in the respective standards. This way, traceability would become a
first-class citizen in software development while still being a rich
concept and not just the plain dependency relationship we can use
right now in those languages.

Working together with Industry. Orthogonal to all the
others, we (the research community) should aim to have more
frequent exchanges with practitioners to better understand why
they end up creating traces manually instead of trying to reuse
any of the dozens existing solutions covered in our survey. Some
reasons have been already hinted in this paper, based on our
own experience in industrial projects involving some type of
traceability need and based on the survey we have conducted,
but there could be others we are not aware of. Or a different
prioritization than the one we have in mind. If we want traceability
research to transfer to industry, more and better communication
flows should be part of the agenda.

7 CONCLUSION

Our survey reveals a continuous interest in traceability even if,
often, it does not have the spotlight it deserves1 given the key role
it plays in a number of software engineering tasks. Work relating
to traceability is indeed disseminated within established research
communities (e.g., debugging, SPL). Existing conceptualizations
vary greatly depending on the community to which its authors
belong to as well as the objectives they aim at. As a consequence,
a clear and measurable idea of the costs and benefits to software
traceability is slow to emerge

To help visualize, classify and compare the different traceabil-
ity approaches, we propose a feature model covering all important
traceability aspects, as derived from a thorough analysis of the
traceability literature. Following the existing body of work, we
put special emphasis in separating how traces are represented from
how they are identified and managed.

Beyond the feature model, our analysis highlights several
limitations of current traceability approaches that should be further
developed. Especially given the new challenges the growing use of
AI in Software Engineering [84, 93] is introducing (e.g. in terms
of reproduciblity and explainability of the AI decisions). In this
sense, we hope this paper serves as a “wake-up call” to make sure
any new AI proposal comes together with a proper traceability
mechanism that assists engineers in recording and understanding
the impact of the new AI components in the software engineering
process.

As further work, we plan to work on some of the roadmap
items above, starting with the proposal of a general traceability
metamodel (kind of a superset of all the surveyed ones) that could
be used as a starting point in any new traceability project. To
facilitate the reuse of such metamodel, we will also release the
modeling infrastructure to adapt/refine/deploy it. Once we have
this core element, we plan to start working with some of the
authors of other proposals to map and bridge their algorithms and
techniques to this “unified” metamodel and study how to embed
it in other modeling languages (like UML or SysML) to further
facilitate its adoption.

REFERENCES

[1] The DBLP advisory board. The dblp team: Monthly snapshot
release of july 2020. DBLP - Computer science bibliog-
raphy., July 2020. https://dblp.org/xml/release/dblp-2020-
0701.xml.gz.

[2] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni. Model traceability. IBM Systems Journal, 45(3):515–
526, 2006.

[3] B Amar, H Leblanc, B Coulette, and P Dhaussy. Automatic
co-evolution of models using traceability. Communications
in Computer and Information Science, 170, 2013.

[4] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira,
Jean-Claude Royer, Andreas Rummler, and André Sousa.
A model-driven traceability framework for software product
lines. Software and Systems Modeling, 9(4):427–451, 2010.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo. Recovering traceability links between code and

1. As an example, a trace-based paper was awarded the most influential
paper in the past 10 years at ICSE [50]. The work introduced a novel trace-
based approach to debugging. Yet, the focus was on the debugging aspect of the
paper even if traceability was the key to achieve that debugging improvement.
The word "trace" alone is mentioned 46 times in the 10 pages paper.

11

documentation. IEEE Transactions on Software Engineering,
28(10):970–983, Oct 2002.

[6] Giuliano Antoniol, Jane Cleland-Huang, Jane Huffman
Hayes, and Michael Vierhauser. Grand challenges of trace-
ability: The next ten years. CoRR, abs/1710.03129, 2017.

[7] A. Arunthavanathan, S. Shanmugathasan, S. Ratnavel,
V. Thiyagarajah, I. Perera, D. Meedeniya, and D. Balasub-
ramaniam. Support for traceability management of soft-
ware artefacts using natural language processing. In 2016
Moratuwa Engineering Research Conference (MERCon),
pages 18–23, April 2016.

[8] Hazeline U. Asuncion, Frédéric François, and Richard N.
Taylor. An end-to-end industrial software traceability tool. In
Ivica Crnkovic and Antonia Bertolino, editors, Proceedings
of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007,
Dubrovnik, Croatia, September 3-7, 2007, pages 115–124.
ACM, 2007.

[9] Bruno Azevedo. and Mario Jino. Modeling traceability in
software development: A metamodel and a reference model
for traceability. In Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software
Engineering - Volume 1: ENASE,, pages 322–329. INSTICC,
SciTePress, 2019.

[10] Omar Badreddin, Arnon Sturm, and Timothy C. Lethbridge.
Requirement traceability: A model-based approach. In 2014
IEEE 4th International Model-Driven Requirements Engi-
neering Workshop (MoDRE), pages 87–91, Aug 2014.

[11] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and
Per Runeson. A theory of distances in software engineering.
Inf. Softw. Technol., 70(C):204–219, February 2016.

[12] Lossan Bondé, Pierre Boulet, and Jean-Luc Dekeyser. Trace-
ability and Interoperability at Different Levels of Abstraction
in Model-Driven Engineering, pages 263–276. Springer
Netherlands, Dordrecht, 2006.

[13] Markus Borg, Per Runeson, and Anders Ardö. Recovering
from a decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical Software
Engineering, 19(6):1565–1616, 2014.

[14] Mario Borillo, Andrée Borillo, Núria Castell, Dominique
Latour, Yannick Toussaint, and M. Felisa Verdejo. Applying
linguistic engineering to spatial software engineering: The
traceability problem. In Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence, ECAI ’92, page
593–595, USA, 1992. John Wiley & Sons, Inc.

[15] Elke Bouillon, Patrick Mäder, and Ilka Philippow. A survey
on usage scenarios for requirements traceability in prac-
tice. In Requirements Engineering: Foundation for Software
Quality, pages 158–173. Springer Berlin Heidelberg, 2013.

[16] Pierre Bourque and Richard E. Fairley, editors. SWEBOK:
Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society, Los Alamitos, CA, version 3.0
edition, 2014.

[17] Hugo Brunelière, Erik Burger, Jordi Cabot, and Manuel
Wimmer. A feature-based survey of model view approaches.
Softw. Syst. Model., 18(3):1931–1952, 2019.

[18] Robert Andrei Buchmann and Dimitris Karagiannis. Mod-
elling mobile app requirements for semantic traceability.
Requirements Eng, 22(1):41–75, jul 2015.

[19] Hendrik Bünder, Christoph Rieger, and Herbert Kuchen. A

domain-specific language for configurable traceability anal-
ysis. In Proceedings of the 5th International Conference
on Model-Driven Engineering and Software Development.
SCITEPRESS - Science and Technology Publications, 2017.

[20] Sofia Charalampidou, Apostolos Ampatzoglou, Evangelos
Karountzos, and Paris Avgeriou. Empirical studies on soft-
ware traceability: A mapping study. Journal of Software:
Evolution and Process, n/a(n/a):e2294, 2020. e2294 JSME-
19-0120.R2.

[21] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and
E. Romanova. Best practices for automated traceability.
Computer, 40(6):27–35, 2007.

[22] Jane Cleland-Huang, Orlena C. Z. Gotel, Jane Huff-
man Hayes, Patrick Mäder, and Andrea Zisman. Software
traceability: Trends and future directions. In Future of
Software Engineering Proceedings, FOSE 2014, page 55–69,
New York, NY, USA, 2014. Association for Computing
Machinery.

[23] Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and
Denys Poshyvanyk. Information retrieval methods for au-
tomated traceability recovery. Software and Systems Trace-
ability, pages 71–98, 2012.

[24] A. M. Debiasi Duarte, D. Duarte, and M. Thiry. Trace-
bok: Toward a software requirements traceability body of
knowledge. In 2016 IEEE 24th International Requirements
Engineering Conference (RE), pages 236–245, Sep. 2016.

[25] Timothy Dietrich, Jane Cleland-Huang, and Yonghee Shin.
Learning effective query transformations for enhanced re-
quirements trace retrieval. In 2013 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), pages 586–591, Nov 2013.

[26] Nikolaos Drivalos, Dimitrios S. Kolovos, Richard F. Paige,
and Kiran J. Fernandes. Engineering a dsl for software trace-
ability. In Dragan Gašević, Ralf Lämmel, and Eric Van Wyk,
editors, Software Language Engineering, pages 151–167,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[27] Nikolaos Drivalos-Matragkas, Dimitrios S. Kolovos,
Richard F. Paige, and Kiran J. Fernandes. A state-based
approach to traceability maintenance. In Proceedings of
the 6th ECMFA Traceability Workshop, ECMFA-TW ’10,
page 23–30, New York, NY, USA, 2010. Association for
Computing Machinery.

[28] R. Elamin and R. Osman. Implementing traceability reposi-
tories as graph databases for software quality improvement.
In 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 269–276, 2018.

[29] Stefan Feldmann, Konstantin Kernschmidt, Manuel Wim-
mer, and Birgit Vogel-Heuser. Managing inter-model incon-
sistencies in model-based systems engineering: Application
in automated production systems engineering. In Software
Engineering 2020, volume 153, pages 105–134, 2019.

[30] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live trace
visualization for comprehending large software landscapes:
The explorviz approach. In 2013 First IEEE Working Confer-
ence on Software Visualization (VISSOFT), pages 1–4, Sep.
2013.

[31] J. M. Florez. Automated fine-grained requirements-to-code
traceability link recovery. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 222–225, May 2019.

[32] Ismenia Galvao and Arda Goknil. Survey of traceability

12

approaches in model-driven engineering. In 11th IEEE
International Enterprise Distributed Object Computing Con-
ference (EDOC 2007), pages 313–313, Oct 2007.

[33] A. Gannous and A. Andrews. Integrating safety certification
into model-based testing of safety-critical systems. In 2019
IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), pages 250–260, Oct 2019.

[34] Arda Goknil, Ivan Kurtev, Klaas van den Berg, and Wietze
Spijkerman. Change impact analysis for requirements: A
metamodeling approach. Information and Software Technol-
ogy, 56(8):950 – 972, 2014.

[35] O. C. Z. Gotel and C. W. Finkelstein. An analysis of
the requirements traceability problem. In Proceedings of
IEEE International Conference on Requirements Engineer-
ing, pages 94–101, April 1994.

[36] Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes,
Andrea Zisman, Alexander Egyed, Paul Grünbacher, Alex
Dekhtyar, Giuliano Antoniol, Jonathan Maletic, and Patrick
Mäder. Traceability Fundamentals, pages 3–22. Springer
London, London, 2012.

[37] Birgit Grammel, Stefan Kastenholz, and Konrad Voigt.
Model matching for trace link generation in model-driven
software development. In Robert B. France, Jürgen
Kazmeier, Ruth Breu, and Colin Atkinson, editors, Model
Driven Engineering Languages and Systems - 15th Inter-
national Conference, MODELS 2012, Innsbruck, Austria,
September 30-October 5, 2012. Proceedings, volume 7590
of Lecture Notes in Computer Science, pages 609–625.
Springer, 2012.

[38] Victor Guana and Eleni Stroulia. End-to-end model-
transformation comprehension through fine-grained trace-
ability information. Softw Syst Model Systems Modeling,
18(2):1305–1344, jun 2017.

[39] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Seman-
tically enhanced software traceability using deep learning
techniques. In Proceedings of the 39th International Confer-
ence on Software Engineering, ICSE ’17, page 3–14. IEEE
Press, 2017.

[40] Saida Haidrar, Adil Anwar, and Ounsa Roudies. Towards a
generic framework for requirements traceability management
for SysML language. In 2016 4th IEEE International
Colloquium on Information Science and Technology (CiSt).
IEEE, oct 2016.

[41] Abel Hegedus, Gabor Bergmann, Istvan Rath, and Daniel
Varro. Back-annotation of simulation traces with change-
driven model transformations. In 2010 8th IEEE Inter-
national Conference on Software Engineering and Formal
Methods. IEEE, sep 2010.

[42] Philipp Heisig, Jan-Philipp Steghöfer, Christopher Brink,
and Sabine Sachweh. A generic traceability metamodel for
enabling unified end-to-end traceability in software product
lines. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, SAC ’19, page 2344–2353, New
York, NY, USA, 2019. Association for Computing Machin-
ery.

[43] Jonas Helming, Maximilian Koegel, Helmut Naughton, Joern
David, and Aleksandar Shterev. Traceability-based change
awareness. In Model Driven Engineering Languages and
Systems, volume 5795, pages 372–376. Springer Berlin Hei-
delberg, 10 2009.

[44] Institute of Electrical and Electronics Engineers (IEEE). Ieee

guide for software requirements specifications. IEEE Std
830-1984, pages 1–26, Feb 1984.

[45] Institute of Electrical and Electronics Engineers (IEEE). Ieee
standard glossary of software engineering terminology. IEEE
Std 610.12-1990, pages 1–84, Dec 1990.

[46] ISO. Road vehicles – Functional safety, 2011.
[47] Álvaro Jiménez, Juan M. Vara, Verónica A. Bollati, and

Esperanza Marcos. Model-driven development of model
transformations supporting traces generation. In Building
Sustainable Information Systems, pages 233–245. Springer
US, 2013.

[48] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,
Euiseob Shin, and Moonhang Huh. Form: A feature-
;oriented reuse method with domain-;specific reference ar-
chitectures. Annals of Software Engineering, 5(1):143, 1998.

[49] Barbara Kitchenham, O. Pearl Brereton, David Budgen,
Mark Turner, John Bailey, and Stephen Linkman. Systematic
literature reviews in software engineering – a systematic
literature review. Information and Software Technology, 51
(1):7 – 15, 2009. Special Section - Most Cited Articles in
2002 and Regular Research Papers.

[50] Andrew J. Ko and Brad A. Myers. Debugging reinvented:
Asking and answering why and why not questions about
program behavior. In Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE ’08, page
301–310, New York, NY, USA, 2008. Association for Com-
puting Machinery.

[51] Sahar Kokaly, Rick Salay, Marsha Chechik, Mark Law-
ford, and Tom Maibaum. Safety case impact assessment
in automotive software systems: An improved model-based
approach. In Lecture Notes in Computer Science, pages 69–
85. Springer International Publishing, 2017.

[52] Simon Frederick Königs, Grischa Beier, Asmus Figge, and
Rainer Stark. Traceability in systems engineering – review
of industrial practices, state-of-the-art technologies and new
research solutions. Advanced Engineering Informatics, 26
(4):924 – 940, 2012. EG-ICE 2011 + SI: Modern Concurrent
Engineering.

[53] Thibault Béziers la Fosse, Massimo Tisi, and Jean-Marie
Mottu. Injecting execution traces into a model-driven frame-
work for program analysis. In Software Technologies: Appli-
cations and Foundations, pages 3–13. Springer International
Publishing, 2018.

[54] Patrick Mader, Ilka Philippow, and Matthias Riebisch. A
traceability link model for the unified process. In Eighth
ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed
Computing (SNPD 2007), volume 3, pages 700–705, July
2007.

[55] Patrick Mader, Orlena Gotel, and Ilka Philippow. Motivation
matters in the traceability trenches. In 2009 17th IEEE
International Requirements Engineering Conference, pages
143–148, Aug 2009.

[56] Ana Cristina Marcén, Raúl Lapeña, Oscar Pastor, and Carlos
Cetina. Traceability link recovery between requirements and
models using an evolutionary algorithm guided by a learning
to rank algorithm: Train control and management case. J.
Syst. Softw., 163:110519, 2020.

[57] Andrian Marcus and Jonathan I. Maletic. Recovering
documentation-to-source-code traceability links using latent
semantic indexing. In 25th International Conference on

13

Software Engineering, 2003. Proceedings., pages 125–135,
May 2003.

[58] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie
Wiels, and Benjamin Monate. Testing or formal verifica-
tion: Do-178c alternatives and industrial experience. IEEE
Software, 30(3):50–57, 2013.

[59] N. Mustafa and Y. Labiche. The need for traceability in
heterogeneous systems: A systematic literature review. In
2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 305–310, July
2017.

[60] Patrick Mäder, Olive Gotel, and I. Philippow. Rule-based
maintenance of post-requirements traceability relations. In
2008 16th IEEE International Requirements Engineering
Conference, pages 23–32, Sep. 2008.

[61] Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel
Briand, and Thierry Coq. A sysml-based approach to trace-
ability management and design slicing in support of safety
certification: Framework, tool support, and case studies. In-
formation and Software Technology, 54(6):569 – 590, 2012.
Special Section: Engineering Complex Software Systems
through Multi-Agent Systems and Simulation.

[62] C. Neumuller and P. Grunbacher. Automating software
traceability in very small companies: A case study and
lessons learne. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06), pages 145–
156, Sep. 2006.

[63] Antoni Olivé. Representation of generic relationship types
in conceptual modeling. In Anne Banks Pidduck, M. Tamer
Ozsu, John Mylopoulos, and Carson C. Woo, editors, Ad-
vanced Information Systems Engineering, pages 675–691,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[64] Richard Paige, Gøran Olsen, Dimitrios Kolovos, Steffen
Zschaler, and Christopher Power. Building model-driven
engineering traceability classifications. In Computer Science,
01 2010.

[65] Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos,
Kiran J. Fernandes, Christopher Power, Goran K. Olsen, and
Steffen Zschaler. Rigorous identification and encoding of
trace-links in model-driven engineering. Software & Systems
Modeling, 10(4):469–487, 2011.

[66] Richard F. Paige, Athanasios Zolotas, and Dimitris Kolovos.
The changing face of model-driven engineering. In Present
and Ulterior Software Engineering, pages 103–118. Springer
International Publishing, 2017.

[67] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massim-
ilano Di Penta, Denys Poshynanyk, and Andrea De Lucia.
How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms. In 2013 35th
International Conference on Software Engineering (ICSE),
pages 522–531, May 2013.

[68] Annibale Panichella, Collin McMillan, Evan Moritz, Davide
Palmieri, Rocco Oliveto, Denys Poshyvanyk, and Andrea De
Lucia. When and how using structural information to im-
prove ir-based traceability recovery. In 2013 17th European
Conference on Software Maintenance and Reengineering,
pages 199–208, March 2013.

[69] Michael C. Panis. Successful deployment of require-
ments traceability in a commercial engineering organiza-
tion...really. In 2010 18th IEEE International Requirements
Engineering Conference, pages 303–307, Sep. 2010.

[70] A. Paz and G. El Boussaidi. A requirements modelling
language to facilitate avionics software verification and cer-
tification. In 2019 IEEE/ACM 6th International Workshop
on Requirements Engineering and Testing (RET), pages 1–8,
May 2019.

[71] Francisca Pérez, Tewfik Ziadi, and Carlos Cetina. Utilizing
Automatic Query Reformulations as Genetic Operations to
Improve Feature Location in Software Models. IEEE Trans-
actions on Software Engineering, 2020.

[72] Rolf-Helge Pfeiffer, Jan Reimann, and Andrzej Wąsowski.
Language-independent traceability with lassig. In Modelling
Foundations and Applications, pages 148–163. Springer In-
ternational Publishing, 2014.

[73] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol,
and V. Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval. IEEE Transactions on Software Engineering, 33
(6):420–432, 2007.

[74] M. Rahimi and J. Cleland-Huang. Evolving software trace
links between requirements and source code. In 2019
IEEE/ACM 10th International Symposium on Software and
Systems Traceability (SST), pages 12–12, May 2019.

[75] Brian Randel. Towards a methodology of computing system
design. NATO Software Engineering Conference, Brussels,
Scientific Affairs Division, NATO (Published 1969):pp. 204–
208, 1968.

[76] Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-
Huang, and Patrick Mäder. Traceability in the wild: Auto-
matically augmenting incomplete trace links. In Proceedings
of the 40th International Conference on Software Engineer-
ing, ICSE ’18, page 834–845, New York, NY, USA, 2018.
Association for Computing Machinery.

[77] Hajer Saada, Marianne Huchard, Clementine Nebut, and
Houari Sahraoui. Recovering model transformation traces
using multi-objective optimization. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE). IEEE, nov 2013.

[78] Iván Santiago, Juan M. Vara, Valeria de Castro, and Esper-
anza Marcos. Measuring the effect of enabling traces gener-
ation in ATL model transformations. In Communications in
Computer and Information Science, pages 229–240. Springer
Berlin Heidelberg, 2013.

[79] Iván Santiago, Juan Manuel Vara, María Valeria de Cas-
tro, and Esperanza Marcos. Towards the effective use of
traceability in model-driven engineering projects. In Wilfred
Ng, Veda C. Storey, and Juan C. Trujillo, editors, Concep-
tual Modeling, pages 429–437, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[80] Iván Santiago, Álvaro Jiménez, Juan Manuel Vara, Vale-
ria De Castro, Verónica A. Bollati, and Esperanza Marcos.
Model-driven engineering as a new landscape for traceability
management: A systematic literature review. Information
and Software Technology, 54(12):1340 – 1356, 2012. Special
Section on Software Reliability and Security.

[81] Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-
based traceability: a comprehensive approach. Software &
Systems Modeling, 9(4):473–492, 2010.

[82] Andreas Seibel, Stefan Neumann, and Holger Giese. Dy-
namic hierarchical mega models: comprehensive traceability
and its efficient maintenance. Software & Systems Modeling,
9(4):493–528, 2010.

14

[83] M. Seiler, P. Hübner, and B. Paech. Comparing traceability
through information retrieval, commits, interaction logs, and
tags. In 2019 IEEE/ACM 10th International Symposium on
Software and Systems Traceability (SST), pages 21–28, May
2019.

[84] Saad Shafiq, Atif Mashkoor, Christoph Mayr-Dorn, and
Alexander Egyed. Machine learning for software engineer-
ing: A systematic mapping, 2020.

[85] Y. Shin, J. H. Hayes, and J. Cleland-Huang. Guidelines for
benchmarking automated software traceability techniques. In
2015 IEEE/ACM 8th International Symposium on Software
and Systems Traceability, pages 61–67, May 2015.

[86] Oscar Slotosch and Mohammad Abu-Alqumsan. Modeling
and safety-certification of model-based development pro-
cesses. In Ina Schaefer, Dimitris Karagiannis, Andreas Vo-
gelsang, Daniel Méndez, and Christoph Seidl, editors, Mod-
ellierung 2018, pages 261–273, Bonn, 2018. Gesellschaft für
Informatik e.V.

[87] George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana,
and Paul Krause. Rule-based generation of requirements
traceability relations. Journal of Systems and Software, 72
(2):105 – 127, 2004.

[88] Claudia Szabo and Yufei Chen. A model-driven approach for
ensuring change traceability and multi-model consistency.
In 2013 22nd Australian Software Engineering Conference.
IEEE, jun 2013.

[89] Bedir Tekinerdoğan, Christian Hofmann, Mehmet Akşit, and
Jethro Bakker. Metamodel for tracing concerns across the
life cycle. In Ana Moreira and John Grundy, editors,
Early Aspects: Current Challenges and Future Directions,
pages 175–194, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[97] Dennis Ziegenhagen., Andreas Speck., and Elke Pulver-
müller. Using developer-tool-interactions to expand trac-
ing capabilities. In Proceedings of the 14th International

[90] Tassio Vale, Eduardo Santana de Almeida, Vander Alves,
Uirá Kulesza, Nan Niu, and Ricardo de Lima. Software
product lines traceability: A systematic mapping study. In-
formation and Software Technology, 84:1 – 18, 2017.

[91] Juan Manuel Vara, Verónica Andrea Bollati, Álvaro Jiménez,
and Esperanza Marcos. Dealing with traceability in the
mddof model transformations. IEEE Trans. Software Eng.,
40(6):555–583, 2014.

[92] A. von Knethen. Change-oriented requirements traceability.
support for evolution of embedded systems. In International
Conference on Software Maintenance, 2002. Proceedings.,
pages 482–485, Oct 2002.

[93] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin
Moran, and Denys Poshyvanyk. A systematic literature
review on the use of deep learning in software engineering
research, 2020.

[94] Duncan J. Watts. Should social science be more solution-
oriented? Nature Human Behaviour, 1(1):0015, 2017.

[95] Stefan Winkler and Jens von Pilgrim. A survey of traceability
in requirements engineering and model-driven development.
Software and Systems Modeling, 9(4):529–565, 2010.

[96] Rebekka Wohlrab, Eric Knauss, Jan-Philipp Steghöfer, Sa-
lome Maro, Anthony Anjorin, and Patrizio Pelliccione. Col-
laborative traceability management: a multiple case study
from the perspectives of organization, process, and culture.
Requirements Engineering, 25(1):21–45, 2020.
Conference on Evaluation of Novel Approaches to Software
Engineering - Volume 1: ENASE,, pages 518–525. INSTICC,
SciTePress, 2019.

[98] Dennis Ziegenhagen, Andreas Speck, and Elke Pulver-
mueller. Expanding tracing capabilities using dynamic trac-
ing data. In Communications in Computer and Information
Science, pages 319–340. Springer International Publishing,
2020.

	Introduction
	State of the art
	Towards a common traceablility terminology
	Traceability components
	Traceability glossary

	Traceability Survey method
	Data source and search strategy
	Pruning
	Snowballing
	Threats to validity in the selection process

	A feature model to characterize software traceability
	Introduction to feature modelling
	Trace definition and representation
	Artefacts targeted
	Language
	Relationship types
	Trace quality

	Trace identification
	Manual elicitation
	Recording instrumentation
	Arbitrary rules
	Domain contextualisation

	Trace management
	Trace Maintenance
	Trace Integrity
	Trace persistence
	System integration

	Discussion
	Conclusion

