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Abstract—Traceability helps explaining the execution and evo-
lution of software and systems. It is a key input in many engi-
neering tasks such as program understanding, maintenance and
debugging. Several metamodels to facilitate the representation of
traces and links among related artefacts have been proposed.
There exists a plethora of traceability approaches that focus
on distinct segments of the software and systems development.
Nevertheless, we claim they lack the mechanisms to express
important traceability aspects such as the quality of traces, their
gradual decay, and the evidences supporting them. This affects
the benefits traceability can bring to the above-mentioned tasks.
This paper presents a more expressive traceability metamodel,
covering all the missing dimensions in a single, but extensible
and modular, design. It characterizes trace quality to consider
traces as salient artifacts in system and software development and
maintenance. This modularity facilitates the integration of our
solution in other modeling languages or its partial adoption when
only some specific traceability aspects are needed. Its extensibility
facilitates its customization (e.g., in terms of the types of links
and artefacts) to better cover specific domains.

Index Terms—System and Software Engineering, Model-
Driven Development, Traceability, Metamodeling

I. INTRODUCTION

Traceability is the ability to trace different artefacts of
a system (of systems). It is defined in the IEEE Standard
Glossary of Software Engineering Terminology [25] as the
degree to which a relationship can be established between two
or more products of the development process, especially prod-
ucts having a predecessor–successor or master–subordinate
relationship to one another.

The need for traceability has always been a recurrent aspect
of systems and software development. Across the years, there
has been a continuous interest in developing techniques to
facilitate the representation and analysis of traces and links
between related artefacts. It helps explaining their execution
and evolution as traces offer a different perspective on a
system, arbitrary and customizable, where the relationships
between elements is the most salient artefact. Traceability rises
awareness on specific purposes or goals [12] and has been
proven useful in a diverse number of software engineering
challenges [21]. It is transient to any software maintenance
effort such as change impact prediction [24], [20], debugging
[29], [1], feature location [13], [34] or certification [35] among
many others [27]. In the trenches of DevOps, traceability
maintenance is essential to cope with the continuous artefact
changes for successful system and software project manage-
ment [39].

In the literature, the importance of traceability is reflected in
the production of many metamodels targeting the specification
of traceability aspects. Many of them focus on specific aspects
or domains where the traceability mechanism is applied [3],
[47], [46]. There is even work dedicated to the engineering of
metamodels for traceability that offers a language dedicated
to defining traceability metamodels [14]. Metamodels flourish,
but their knowledge and contributions remain scattered among
systems and software engineering research fields. Overall, we
are still missing a generic metamodel for traceability that
covers not only the representation of artefacts, traces and links
between them but also quality aspects that can be used to
interpret the relevance and integrity of traces.

AI can be a mechanism to infer new traces among sets of
artefacts [6], [21], which will need to come hand in hand with
the proper explainability support, specially considering the
non-deterministic nature of information retrieval algorithms.
This non-deterministic nature draws in a significant degree of
uncertainty about the results such algorithms may yield. Traces
automatically identified show variable confidence. In the same
fashion, versatile artefacts see their cohesion with traces de-
creases with time. This dimension should be considered as a
core concern to traceability.

In this sense, the contribution of this paper is the definition
of Tracea: a generic and extensible traceability metamodel
integrating quality concerns (e.g. decay, confidence, and ex-
plainability) in the definition of traces. The design of the
metamodel favours also its adaptation to specific application
domains and model-driven tool-chains to open the door to a
new generation of techniques (e.g., for impact analysis) that
could benefit from our more expressive metamodel.

The rest of this paper is structured as follows. Section II
introduces the state of the art through a comparison between
a selected set of approaches addressing the modeling of trace-
ability. Section III presents the limitations of current solutions
through their main quality concerns. In Section IV, we show
and depict our metamodel Tracea and display an illustrative
example. We discuss about the integration of Tracea and more
generally of traceability modeling into existing tooling in
Section VI before we conclude in Section VII.

II. STATE OF THE ART

In a previous work, we have identified over 80 approaches
aimed a modeling traces and tracing activities [5]. We describe



in this section a selection of the most representative publica-
tions and then summarize their main limitations as the key
challenges our solution will aim to overcome.

Most works on modelling traceability come, historically,
from the requirement modelling community. Traces are seen
as "links" from requirements to their (sub)components, and to
their design and/or implementation artefacts [44], [22]. Spe-
cially relevant is the work by Goknil et al. [19] that includes
a metamodel for traces, mechanisms for consistency checking
and inferencing, and tooling for change impact analysis.

In the model-driven engineering (MDE) community, re-
search work can be classified into proposals focusing on
modeling the heterogeneity of artefacts – with numerous
contributions aiming at linking text artefacts to design mod-
els [41], or addressing the entanglement of (non functional)
requirements [48] – and proposals adapting traceability to
specific application areas such as the automotive and robotic
industry [15], [40], [42]. In this group, we see several publi-
cations that include custom metamodels built ad hoc to solve
specific model transformation issues [30], [28].

Other modeling approaches are aimed at establishing an
automated trace generation process, e.g., for requirement
traceability. For example, Spanoudakis et al. identify rules
to generate links automatically [43]. We see these cases as
sidesteps from traceability modeling since the works aim
at generating traces (that need being modelled) rather than
modelling traces (that need being generated). As a conse-
quences, the presented metamodels are specific to the types
of models of the generation (e.g., BPMN models [38], or data
warehouse models [33]). Natural language is also often used
in this type of automated processes. In this case, approaches
target the extraction of semantics (or meaning) from textual
requirements. These publications model text blocks with their
dependencies and the dependencies to specific third party
artefacts (e.g., for MDE: [41], for AADL [45], for agile user
stories [10]).

Recently, researchers attempted more generic approaches
to traceability, closer to our own goal. Building on previous
knowledge in specific domains, authors describe their attempts
to synthesize traceability requirements. For example, Azavedo
et al. [4] created a metamodel with explicit (57) relationship
types and (12) different kinds of artefacts based on an arbitrary
separation of software development tasks (e.g., Implementa-
tion, Verification, Modification, Homologation). On the other
hand, Heisig et al. present a modeling approach to traceability
that includes both a basic metamodel with a plugin mechanism
(using XText) that allows users to define their specific repre-
sentations for links and artefacts [23].

While these latter approaches do represent an advance in the
generalizability and adaptability of traceability metamodels,
our approach offers a higher granularity and decomposition
while integrating several quality concerns (decay, confidence,
and explainability). Table I summarizes existing works regard-
ing these core traceability aspects. As shown in the table,
most publications consider a single trace level, which limits
the complexity and diversity of problems where traceability

can be applied. There is also a significant lack of consider-
ation for quality aspects. Consistency is merely mentioned
and confidence is strictly forgotten – none of the selected
approaches mention it. Explainability is reported in a few cases
but remains scarce and no common appreciation has emerged
yet.

III. TRACEABILITY REQUIREMENTS

Following up on the state of the art analysis, this section
details the traceability requirements we believe are needed
in order to have a complete traceability modeling solution,
able to be used in a variety of scenarios, including industrial
applications. Next section describes our proposed metamodel
and how its different components satisfy these requirements.

A. Adaptability & Configurability

Reusability of a traceability solution is key for its industrial
adoption. When traces are seen as useful only to conform a
very specific requirement (e.g. software certification deadline),
enterprises have shown that it is easier or cheaper to execute
it as a manual and ad hoc process [12].

We aim for a metamodel that is configurable and adaptable
to maximize its reusability in a number of application scenar-
ios thus favouring its adoption by companies. For example,
a specific certification paragraph might be better suited (i.e.,
more precise) for the user than the entire certification docu-
ment containing this paragraph. Or, if the purpose is to trace
the impact of changes in a model on the source code, does
the user want to know about the occurrence or the location
of a change? Does the user want to find the right file or the
right class, the right method, or the right package? In other
words, what kind of artefacts of the software product is of
interest (e.g., design models, source code) and to which level
of granularity ?

High-level types for artefacts as well as peculiar level
of granularity must be adequately designed in the tracing
solution.

1) Configurable tracing: A trace is commonly expressed
as the combination of atomic trace links representing direct
connections between a number of artefacts. For example, a
certification document (e.g., ISO-26262 [26]) is "linked" or
"related" to a set of design documents, or models, themselves
being used for (or "relating to") the generation of source
code or other related artefacts such as behavioral models [31].
Depending on authors intentions and problem constraints, they
define traces with a single or multiple sources and end with
one or many targets.

There is little attention put on more complex tracing
purposes such as the complete sequence from certification
specifications to source code implementation, or long reach
tracing ability involving sequences of artefacts or decisions in
chain.

We believe a traceability metamodel must come with sev-
eral levels of granularity to enable users express traceability
relationships either at a coarse-grained or a fine-grained level



Approaches\Quality Adaptability Granularity Consistency Confidence Explainability
Goknil et al.[19] Generic types 1-step links – – –
Taromirad et al.[44] Fixed types 1-step links – – –
Haidrar et al.[22] Fixed types 1-step links Timeliness – –
Sannier et al.[41] Specific types 1-step links – – –
Dubois et al.[15] Specific types 1-step links – – –
Sanchez et al.[40] Specific types Multi steps – – Evidences
Yrjonen et al.[48] Specific types Multi steps Timeliness – Evidences
Jimenez et al.[28] Specific types Multi steps (not applicable) – –
Levendovsky et al.[30] Generic types 1-step links Context sensitive – Evidences
Wang et al.[45] Fixed types 1-step links – – –
Carniel et al.[10] Fixed types Multi steps – – –
Spanoudakis et al.[43] Generic types – –
Pavalkis et al.[38] Specific types 1-step links – – Agent
Maté et al.[33] Specific types 1-step links – – –
Azevedo et al.[4] Generic types Multi steps Timeliness – –
HeiSig et al.[23] Generic types Compositional Context sensitive – –

TABLE I
OCCURRENCES OF THE MAIN PROPERTIES FOR MODELING TRACEABILITY.

depending on their needs. Moreover, if defined at a fine-
grained level, the model should be able to use that information
to propagate those trace links to the container components to
offer automatically the coarse-level view as well.

2) Adaptable tracing: The exact set of artefact types we
must trace in a project may not be completely known upfront.
And they will probably change over time. As such, we need
our metamodel to be extensible with new artefact types that
perfectly match the elements users want under scrutiny. To
ensure reuse, it is convenient to craft a base metamodel and
adapt it to specific situations where traceability will be needed.

It is important not only to be able to extend this base
metamodel with new artefact types but also with new types of
relationships among them (each one with its own semantics).
Most approaches offer fixed types from which to choose.
They are either specific to the domain of application [38],
[17], or generic and relate to a greater extend to the nature
of the artefacts [42], [16]. As Maro et al. warn, "avoid
implicit, convention-based traceability links and strive instead
for explicit links that can be checked with tool support," [32].
In that regard, a distinction based on the nature of artefacts to
provide high level types is recommended by many traceability
researchers [12].

B. Consistency

One of the main argument against investing in automated
traceability support remains the cost of maintaining traces up-
to-date [12]. Software systems evolve and endure maintenance
bug fixing and patches that can potentially modify their
constitutive elements at every level. Even their architecture
changes through time to cope with increasing scalability needs,
to comply with new privacy regulations, or to add or modify
the panel of features offered to the different kind of "users"
of the system. Tracing is no alien to this phenomenon and the
cost to maintain traces consistent with the system increases
hand in hand with the system volatility.

There is no consensus on the means to ensure that traces
remain consistent to the system. Yet, the naive method that
consist in rebuilding the entire graph of traces each time

from scratch does not scale [42]. Gervasi et al. exploit the
information contained in previously defined traces, in order to
facilitate the creation and ongoing maintenance of traces, as
the requirements evolve [18]. Seibel et al. have shown that the
MDE paradigm offers auspicious horizon to the maintenance
of traces [42]. They execute rules in order to maintain a set of
links representative to the trace types predefined beforehand.
Authors extend the concept of timestamp to consider context
changes and thus to reflect better the system volatility.

We agree that traceability metamodels should be able to
represent temporal information [8], not only for the traces but
for all the traced elements so that we can compare them and
evaluate the potential decay the traces may suffer.

C. Confidence

Decay is not the only factor that can affect our confidence
on the consistency and relevance of a trace. The execution
of automated processes to identify traces raises uncertainty
about the actual existence of the results they yield. Learning
techniques, using deep learning algorithms such as in [21],
offer to bridge the cognitive gap among artefacts of different
nature but accuracy is never perfect. There lies an open topic
at the intersection between "traditional" and "AI-enabled"
software practices. Systems with AI-enabled components [gen-
erally probabilistic] can have a high margin of error due to
the uncertainty that often follows predictive algorithms [37].
Taking account of the non deterministic nature of AI modules
is a key factor for AI-enabled software of quality. Moreover,
even a manual trace identification process can have some
uncertainty as designers may not be completely sure about
the real relationship between components that may have been
created a long time ago.

Therefore, we need to be able to express in a traceability
model the confidence we have on the traces. Where to draw
the line between a useful trace based on this confidence level
depends on the envisioned application. There is a trade-off
to evaluate between the level of confidence and the level
of criticallity of the project. If the purpose is to evaluate a
requirement change impact on the source code, traces with a



low confidence level may trigger false positive and generate
some additional work but still be reasonably useful. If traces
are used as part of a security certification, a high confidence
level is a must to obtain valid results. The propagation of
uncertainty is an open topic that authors attempt to address
with a mix of boolean logic and Gaussian statistics [7]. That
should be applied to trace uncertainty as well.

D. Explainability

Explainability is more and more important in any software
system due to increasing transparency, and ethical and regula-
tory concerns. Users do not only require that the answer of the
system is the one expected, they need to know how did the
system proceeded to yield such answer. AI-enabled systems
raises this issue to a new level of salience.

To support explainability, we need to be able to explain the
reason why a link among artefacts is identified. Trace links
can be elicited manually (and a textual report would precise
why in natural language); or identified automatically using
information retrieval and rule-based techniques. We need to
be able to register this nature as well as the details of the
identification process.

For example, programmers often use mnemonics for iden-
tifiers that help associate code with high-level concepts in the
requirements and vice-versa [2]. If traces, used for quality
audit, have been identified thanks to a rule-based approach
exploiting this mnemonics, this information needs to be part
of the traceability model. Those traces could be later used
as evidences to automatically check for potential mismatches
or coverage analysis of requirements not supported in the
implementation.

IV. TRACEa METAMODEL

Based on the previous analysis, we present in this section
a new traceability metamodel, called Tracea. We aim not
to present yet another traceability metamodel but one that
learns from and supersedes previous proposals in order to
provide a more complete metamodel that also responds to the
requirements made explicit in Section III. In the course of
producing this metamodel, we have tried to be as objective
and inclusive as possible. To this extend we use existing
knowledge on adaptable and consistent traceability which we
augment with quality aspects (confidence and explainability)
found missing in the literature of the field. To foster legibility,
we have added a simple but complete example of the use of
our metamodel in the following section.

A. Adaptable and configurable traces

In Tracea, we start from the common core trace repre-
sentation found at the intersection of several of the existing
metamodels and expand and refine it with a more configurable
structure that allows one to define the proper level of granu-
larity.

1) Fine grain tracing structure: The excerpt in Fig. 1
describes the composition scheme of links into a forest-like
structure. Its atomic elements are TraceLinks. A trace link
refers to a source and a target ArtefactFragment(see
below). It may be a leaf – which means it has no successor
links ; or a node – which means the trace does not end with
this link. A Tracelink is a composite of LeafTraceLink
and NodeTraceLink. A Trace starts from a set of trace
links "firstLevel" that connect to their respective trees.
The set of derived TraceLinks from the transitive closure
of firstLevel is contained in the reference traceLinks.
In the same manner, the set of source and target of traces (see
blue references in Fig. 1) is derived as well (see Listing 1).
Trace and TraceLink are subtypes of TracingElement
with a unique identifier (name), a timestamp to address con-
sistency issues (see below), and one or more Agent related.

1 context Trace inv firstLevels:
2 self.traceLinks
3 ->includesAll(self.firstLevels)
4

5 context Trace inv sources:
6 self.firstLevels
7 ->collect(source)
8 ->includesAll(self.sources)
9

10 context Trace inv targets:
11 self.tracelinks
12 ->collect(target)
13 ->includesAll(self.targets)
14

15 context Trace inv sourceArtefacts:
16 self.firstLevels
17 ->collect(source)
18 ->includesAll(self.sourceArtefacts.fragments)
19

20 context Trace inv targetArtefacts:
21 self.tracelinks
22 ->collect(target)
23 ->includesAll(self.targetArtefacts.fragments)

Listing 1. OCL constraints for derived references

2) Adaptable artefacts and relationships: Existing trace-
ability works differ a lot in the kind of artefacts they target.
A unified ontology of traced artefacts has yet to emerge but
a common approach is to distinguish between the nature of
artefacts. I.e., from text intensive (e.g., requirements, certifi-
cation) to structure intensive (e.g., source code, test cases).
In Tracea, we specialize Artefact with TextArtefact,
ModelArtefact, CodeArtefact, and TestArtefact.
The list is not exhaustive. These high-level types support the
user in defining her own (sub)types. They are anchors to
refine artefacts and their fragments at an adequate level of
granularity.

To freely adjust the granularity of the artefacts,
Tracea suggests the fragmentation of Artefact. An
ArtefactFragment defines a part of an artefact that
is of interest (e.g., a method in a class ; a section in a
text document). Tracea implements a high-level separation
for artefacts and relationships. This enables the separate
customization of artefact types and the semantic relationships
between them. The typing of relationships is versatile and we
distinguish two kinds depending on the domain they apply
to: DomainType and EngineeringType. In the former,



Fig. 1. Core compositional nature of Tracea

the semantic of the final user (i.e., its domain of application)
is targeted. In the latter, the concepts used by engineers or
modelers are targeted (the domain of engineering). Same for
the artefact types, relationship types are also expected to be
customized [36] when needed.

Fig. 2 shows an excerpt of the Tracea metamodel that focus
on aspects related to the adaptability of our approach.

B. Confidence of trace links

In Tracea, the confidence of a trace (TraceConfidence)
or of a trace link (LinkConfidence) is an operation return-
ing a real number value representing the level (from 0 to 1)
at which the trace is certain to exist in the system. It is a
statement about the relevance of a trace. A trace and its links
are made by Agents. As illustrated in Fig. 3, an agent can be
human (e.g., when traces are elicited manually), or an agent
can be a machine (e.g., when an algorithm identify the trace
automatically).

Another concern lies in the recording of trace evolution.
The trace creation should be recorded, with the successive
changes that affect it, for evolution analysis. Integrity measures
respective to evolution events (e.g., creation, modification)
should be recorded as well to evaluate their evolution during a
period of time. We implements the occurrence of these events
with the definition of attributes of tracing elements.

C. Trace Consistency

To address the issue of gradual decay, tracing elements
must be considered alike with other software artefacts. Their
evolution must be scrupulously and synchronously monitored.
To be able to represent (and later reason) on the potential de-
cay, we add timestamp attributes to TracingElement (see
Fig. 3), de facto transforming all metaclasses inheriting from

it in temporal elements. We can then use these timestamps to
compare the age of a trace with the age of the elements traced
by it and, if needed, update the confidence we have in that
trace, or trace link, accordingly.

D. Explainability

Traces are a key element in many system and software
engineering activities. Therefore, engineers may not want to
just take them at face value but ask for explanations on how
and when the trace was created. Previous subsection covered
the when, here we focus on the how.

The degree of confidence may be justified with evidences,
if they exist, to explain the rationale behind the quantitative
value. In case of links automatically identified, an evidence
instance can record the information necessary to reproduce
the identification process or at least to partially explain it.

More precisely, as can be seen in Fig. 3, an evidence refines
into three sub-types: AnnotationEvidence contains a
textual description ; RuleEvidence contains a rule (or a
set of rules) in a textual field, as well as the execution date ;
and AIEvidence contains attributes that will help reproduce
the learning scenario, e.g., the kind of algorithm, a reference
to the training set, the associated precision and recall of the
algorithm, and others parameters. An Evidence explanation
can also point to other supporting tracing elements. These
elements testify, or illustrate the evidence and will be useful
for later consistency check.

Every evidence is also optionally endorsed by a set of
Human or Machine agents, which further helps in the explain-
ability of the trace beyond the description and attribute values
stored in the Evidence object itself.



Fig. 2. Customization of artefacts and relationships in Tracea

Fig. 3. Representing and explaining traceability with confidence value, agents, and evidences

V. ILLUSTRATIVE EXAMPLE

In this section, we introduce a simple illustrative example:
tracing the impact of a change in the requirements onto its
implementation in Java classes. We show through this example
the customization of artefacts and relationships, the importance
of a quality evaluation, and how we circumvent consequences
of using AI-enabled modules for trace identification.

A. Project purpose

In this example, links are relating requirements to Java
classes that undergo modifications. Java classes and require-
ments representation need to be customized in the tracing
system, as well as the kinds of links that occur between them.
If those links are identified automatically (e.g., thanks to an AI
identification technique), they bear a confidence level related
to the accuracy of the approach used (e.g., a combination of
precision and recall). Evidences backing up this quantification
(e.g., the kind of algorithm, the dataset used) can also be stored

for later consultation. With this information recorded, Tracea
enables users to answer questions such as "whose classes have
been impacted by a specific change in the requirements?" Or
more precisely, "what Java classes are impacted by this change
in the requirements with a minimum confidence of 80%?"

B. Customization of artefacts and relationships

In this example, a trace aligns two kinds of artefacts :
Requirement specification and Source class.

These artefacts are too complex to be used at a coarse
level of granularity. Java classes may comprise hundreds (or
even thousands) of lines of code, requirement specification
documents contain hundreds of sections. To address this size
issue, a source Artefact (e.g., a class) is decomposed into
smaller part (such as methods). In the same manner, speci-
fication documents are decomposed into sections. Listing 2
shows an excerpt of our textual concrete syntax applied to this
example where we can see the fragmentation of artefacts. The



structure of the traced system is first described with artefacts
and fragments sections. For legibility concern, the only kinds
of relationships in that example are Implement, i.e., a source
class implements a requirement section, and Redirect, i.e., a
login reject redirects to a different method.
1 artefacts {
2 Requirement r_01 {fragments {sAuth, sLogout}},
3 Source Login.java {fragments {mLogin, mLogError,

mLogout}},
4 }
5 fragments {
6 RequirementSection sAuth { }, sLogout { },
7 Method mLogin { }, mLogError { }, mLogOut { },
8 }
9 relationshiptypes {

10 EngineeringType Implements {},
11 DomainType Redirects {}
12 }
13 agents {
14 HumanAgent 5e8a5T1e4,
15 MachineAgent Rd15OUA5RD
16 }

Listing 2. Artefacts, Fragments, Relationships, and Agents declaration

The concrete traces are recorded as illustrated in Listing 3.
A Trace is identifiable by its name and contains trace links
whose composition is described through successors. This
example is the minimalist expression of a trace. Each and
every element is susceptible to refer to an Agent that indicates
who (and what is the nature of that “who”) responsible for the
edification of the trace. In our case, link_01 and link_03
have agent referees.
1 Trace ChangeImpact {
2 tracelinks {
3 NodeTraceLink link01 {
4 source sAuth
5 target mLogin
6 successors {link02}
7 relationshiptype Implements
8 agents 5e8a5T1e4
9 evolution {{20210621-0954},{},{}}

10 },
11 LeafTraceLink link02 {
12 source mLogin
13 target mLogError
14 relationshiptype Redirects
15 evolution {{20210621-0954},{20210721-1025},{}}
16 },
17 LeafTraceLink link03 {
18 source sLogout
19 target mLogout
20 successors {}
21 relationshiptype Implements
22 agents Rd15OUA5RD
23 confidence c01
24 evolution {{20210621-1521},{20210721-1025},{}}
25 },
26 }
27 }

Listing 3. Trace instance

C. Explainability for AI-enabled traceability

You’re not forced to create the above traces yourself, there
exists automated evaluation techniques for change impact that
predict which classes are most likely to change. Tracea also
supports this scenario in which a change in the requirements
links to potentially impacted classes, and to actually modified
classes. This distinction shows a distinction in nature of the
links themselves. The former is more inclined to suffer a

low level of confidence than the automatized latter. In our
case, Listing 3 shows that links link_01 and link_02
have been manually identified, and thus their confidence is
1.0 whereas Link_03 has been automatically suggested and
boasts a confidence of 0.8. This level of confidence relies on
evidences about the algorithm employed, its parameterization,
and its training setting. As can be seen in Listing 4, a
confidence is related to a Trace or a TraceLink and a
set of Evidences.

Evidences may be an AIEvidence like the one we
just described, or RuleEvidence that relates patterns used
for automatic identification, or AnnotationEvidence that
simply contains a textual explanation of the evidence. In
the example of Listing 4, the confidence value represents
the confidence in the prediction that the method mLogin is
impacted by a change in requirement sAuth. This prediction
has been made using a specific algorithm which run settings
can be found in the evidences section.

1 confidences {
2 Confidence c01 {
3 value 0.8
4 evidence {Evidence_link03}
5 },
6 }
7 evidences {
8 AIEvidence Evidence_link03 {
9 algorithmUsed "AI4All"

10 parameters {"platform:/resource/train/pos_202012"}
11 executionDate "20201207-123536"
12 trainingResults .8 .7
13 impactedElements ("link02", mLogin, otherMethod)
14 },
15 }

Listing 4. Confidence and evidences

D. Analysis capabilities

Once the information is stored in the Tracea system, this
opens the door to a number of analysis queries. An option to
answer the aforementioned question about the identification
of Java classes impacted by a change in the requirements
with a minimum confidence of 80% is to implement it with
OMG’s Object Constraint Language (OCL)1. Listing 5 shows
an excerpt that captures the targets (Source class) of a trace
if the confidence in the links that binds them to their source
(Requirement) is greater than 0.8.

1 context Trace inv:
2 self.traceLinks
3 ->select(tl : TraceLink | tl.confidence >= 0.8)
4 .target

Listing 5. OCL implementation of confidence check

Other attributes can be used to further restrict the resulting
set of classes. E.g., evolution timestamps can be compared to
only consider recently active source files. "evolution" keyword
in Tracea’s syntax refers to respectively creation, modification
and deletion time of links. Listing 6 illustrates a case where
the user only wants to capture elements created before 2021.

1omg.org/spec/OCL

omg.org/spec/OCL


1 context Trace inv:
2 self.traceLinks
3 ->select(tl : TraceLink |
4 tl.confidence >= 0.8
5 && isBefore(tl.creationDate, "20210101") )
6 .target

Listing 6. Confidence check with evolution constraint

VI. INTEGRATION AND TOOL SUPPORT

An Xtext-based2 definition of our metamodel is available
on Git3. As concrete syntax, we are using the JSON textual
syntax shown in the examples above and illustrated in Fig. 4.

Beyond this option, we have integrated Tracea on top
of Capra4 to enable ubiquitous quality traceability for EMF
elements. Eclipse Capra is a traceability management tool
offering some interesting features to edit and visualize traces,
including traceability matrices and graph visualisations. The
customization language is based on Xcore5 and we added
Tracea concepts as an extension of Capra to integrate our
trace quality definition. The source code is available on Git6.
This integration is an actionable example of the integration
of quality attributes into an existing tracing software system.
Thanks to it you can benefit from the advanced metamodeling
concepts in Tracea while also enjoying Capra’s visualization
capabilities.

In both cases, the designer can use Tracea as a standalone
tool or add it as a new component to any model-driven
pipeline. Capra is especially relevant to exploit the most of
the Eclipse EMF ecosystem.

As, in complex scenarios, traces can come from different
systems (using different languages or even third-party APIs),
it is useful to keep Tracea as an external language that
you can adapt to the changing needs of your application
scenario and the types of artefacts you need to trace [11],
[32]. But as a trade-off, this forces designers to learn and
add to their toolset a new language. An alternative option is
to define Tracea as a kind of internal DSL, embedded in a
more general modeling language like SysML or UML using
the extension capabilities offered by them, e.g. UML profiles.
We are currently working on the integration of Tracea into
SysMLv2 to allow a transverse linkage of elements mixing
both existing and custom relationship types.

VII. CONCLUSION

Traceability research is scattered among different subfields
of system and software engineering. This results in diverse
but partial solutions to represent traceability information. We
have presented a complete traceability metamodel that aims to
cover all its aspects, including the quality and uncertainty of
specific traces, their decay, or the evidences that support them.
This information is needed to make fully informed decisions

2https://www.eclipse.org/Xtext/
3https://github.com/ebatot/TraceaDSL
4https://projects.eclipse.org/projects/modeling.capra
5https://wiki.eclipse.org/Xcore
6https://github.com/ebatot/tracea-capra

based on trace data. Our proposal has also been designed with
modularity and extensibility principles in mind to facilitate its
adoption in a large variety of domains. We believe it should
help in improving a number of traceability-based algorithms
(e.g., for change impact analysis) that could now also take into
account these additional traceability dimensions.

As further work we want to continue advancing on these lat-
ter aspects, mainly proposing extensions to general modeling
languages (like SysML or UML) that integrate our traceability
metamodel. Moreover, we will explore the complementarity
of AI and traceability. Regarding AI for traceability detection
we plan to extend existing techniques to automatically infer
traces to populate our metamodel considering the integrity and
quality aspects of the inference process. Regarding traceability
for AI, we plan to rely on our metamodel to offer better
explainability support to the myriad of AI-based solutions
for Software Engineering that right now mostly ignore this
aspect [9], [37].
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